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Chapter 1

Introduction

The first chapter gives a broad outline of this thesis, we introduce the concerned research domains
and the topics of the interdisciplinary studies between them. The motivations and contributions are
discussed. A reading road-map of this manuscript is provided in the end.

1.1 Context, Motivation and Applications
System identification and machine learning are two similar concepts independently used in auto-
matic/econometrics and computer science community. System identification uses statistical methods
to build mathematical models of dynamical systems from measured data [124]. Machine learning
algorithms build a mathematical model based on sample data, known as "training data", in order to
make predictions or decisions without being explicitly programmed to do so [74]. Except the fi-
nal prediction accuracy of the model, converging speed and stability are another two key factors to
evaluate the training process, especially in the on-line learning scenario, and these properties have
already been well studied in control theory. Therefore, this thesis will implement the interdisciplinary
researches between these areas.

The conducted studies can be divided into three topics, Fig. 1.1 illustrates the main concerned
domains for each topic of studies. In general, the process of system identification / machine learning,
can be summarized to three steps: 1) data preparation, 2) parameter estimation / learning or training
and 3) system validation / testing. The second step is just one concept, two statements, and the main
difference is in the third point. For some applications of system identification, especially the model-
driven applications, use the same training data to valid the model (examples in chapter 6 in [80]), while
machine learning algorithm specifically prepares a testing dataset to evaluate the prediction accuracy.
The main contributions of this thesis are on the first two steps, where we incorporate control theory
into these steps to improve the performance under certain circumstances.

The first topic is optimal control on economic model. Obviously, this topic consists of two parts:
1) system identification and 2) optimal control. Economists develop economic models to explain con-
sistently recurring relationships [19]. E.g., the optimal growth model: Solow-Swan model [125, 127],
which studies long-run economic growth by looking at capital accumulation, labour or population
growth, and increases in productivity (commonly referred to at technological progress). And Ramsey-
Cass-Koopmans model [109, 22, 73] that analyses the consumer optimization, endogenizing the sav-
ing rate while take interest rate and discount rate into consideration. Econometrics is the tool to con-
duct these analysis (dynamic optimization technique is used). Econometrics uses economic theory,
mathematics, and statistical inference to quantify economic phenomena. In first part of this topic, we
first present an analysis which uses only method from econometrics on China macroeconomic data.
This work is not only a good practice for us (who with the background in automatic and computer
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Figure 1.1 – Mainly concerned domains for the topics of study

science) to understand the theories used in econometrics, but also make the contributions in economic
area, to reveal the trend of China’s economic growth transition: from export-oriented to consumption-
oriented. In second part of this topic, we perform the system identification on France macroeconomic
data with Vector AutoRegressive (VAR) framework with Least Squares (LS) estimation, the identi-
fied model is presented in the favour of control, which means the model is represented on state space
form. In economic area, there are studies to discuss extending VAR framework to analyze scenarios
with unobservable explanatory variables by using state space models [78, 136, 84], because when
explanatory variables are not observable, LS estimation is not usable. However, one can apply like-
lihood based inference, since the so-called Kalman filter allows to construct the likelihood function
associated with a state space model. Except dynamic linear models with unobserved components,
many other dynamic time series models in economics can also be represented in state space form,
for instance, 1) autoregressive moving average models or 2) time varying parameter models [40]. In
our case, the reason to use state space form instead of autoregressive equation is because it is easier
to design the optimal controller via Linear Quadratic Regulator (LQR) solution. The LQR algorithm
is essentially an automated way of finding an appropriate state-feedback controller. Once the model
is estimated, the control system can apply the control law to bring the system to the desired state
(e.g. a 3% yearly constant growth rate of Gross Domestic Production (GDP) in the macroeconomic
model). We can also impose perturbations on outputs and constraints on inputs. This simulation can
closely emulate the real world situation of economic crisis (e.g. 2008 financial crisis and Covid-19
pandemic). And economists can observe the recovery trajectory of economy with limited resources,
which gives meaningful implications for policy-making. Control theory has been successfully imple-
mented in economic domain to cope with problems such as: monetary policy [20, 62], fiscal policy
[90] and resource allocation [29, 66]. Our work makes the contributions to expand it to macroeco-
nomic models.

The second topic talks about using control theory to improve the on-line training of neural net-
work. For on-line training scenario, training data comes in batches. One challenge of this setting is
that the time interval between two data batches may be short, so we need the model to learn as quickly
as possible. Another uncertainty is that the data distribution between different data batches may be
very different, and we need to ensure that the model continues to improve. Learning rate and gradient
are two main factors to control the converging speed, the state of the art learning rate algorithm can
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be grouped into two categories: 1) time-based and 2) adaptive gradient. The time-based method pre-
fixes a trajectory of learning rate before training process, no matter it is monotonous decreasing [26],
decreasing with sine wave oscillation [2] or cyclical changing [123] over time. The advantage is easy
to adopt, but the disadvantage is that the learning rate can not be adjusted even for some data batches,
we could (should) certainly have a bigger (smaller) learning step. Adaptive gradient method such as
Adam [72] is recent state of the art, but research [138] suggested that adaptive gradient methods do
not generalize as well as stochastic gradient descent (SGD). These methods tend to perform well in
the initial portion of training but are outperformed by SGD at later stages of training. Even though
the algortihms such as AmsGrad [111] and AdaBound [89] claimed they fixed the defects in Adam
by their method (see Sec. 8.4.2), but their results tested under on-line learning scenario do not show
advantages (see Sec. 10.3). Therefore, we propose our performance-based learning rate algorithm: E
(Exponential) / PD (Proportional Derivative) feedback control. Training a neural network is the pro-
cess to minimize the cost function, i.e. minimize the loss value, in our designed control system, we
represent the Convolutional Neural Network (CNN) as plant, the learning rate as control signal and
the loss value as error signal. The experiments are based on CIFAR10 [76] and Fashion-MNIST [139]
datasets, the results show that not only our algorithm outperforms the comparisons in final accuracy,
final loss and converging speed, the result curve of accuracy and loss are also extremely stable near
the end of training.

Still for the second topic, one observation from E/PD experiments is that when the loss value
continuously decreases, our learning rate decreases too. But as the loss continuously decreases, it
means we are in the good direction of training, we should not decrease the learning rate at that time.
To prevent this sudden drop of learning rate at PD phase, we propose an event-based learning rate
algorithm based on E/PD: Event-Based Learning Rate. Results show that event-based E/PD improves
original E/PD in final accuracy, final loss and converging speed. Even the new algorithm introduces
small oscillations to the training process, but the influence is minor.

Another observation from E/PD experiment is that on-line learning fixes a training epoch number
for each data batch. But as E/PD converges really fast, the significant improvement only comes from
the beginning epochs for each data batch, the latter ones do not have much contributions for the
training. Therefore, we propose another event-based control based on E/PD: Event-Based Learning
Epochs, which inspects the historical loss value, when the progress of training is lower than a certain
threshold, we pass the current data batch, turn to welcome the next batch. The experiments are based
on CIFAR10 and CIFAR-100 [76] datasets. Results show that event-based learning epochs can save
up to 67% epochs on CIFAR-10 without degrading much model performance.

The third topic focus on noisy (dirty) label data learning problem. This topic retraces to a fun-
damental assumption in system identification and machine learning: the data source is clean, i.e.,
features and labels are correctly set. But big data are everywhere in research now, and the data sets
are only getting bigger, which makes it challenging to ensure the data quality. In this part, we only
consider the noise on data labels instead of on data features. Considering noisy data in classifica-
tion algorithms is a problem that has been explored in the machine learning community as discussed
in [44, 14, 101]. And our motivating case studies (Sec. 13.2 and . 14.2) also show that noisy label data
can degrade the performance of machine learning algorithms. To tackle this problem, we propose a
generic framework: Robust Anomaly Detector (RAD), RAD is a framework that model within RAD
can continuously learn from dirty label data. It is called anomaly detector is because we implement
this framework for anomaly detection purpose in our analysis, but its usage is not limited to anomaly
detection. The data selection part of RAD is a two-layer framework, where the first layer is primarily
used to filter out the suspicious data, and the second layer mainly detects the anomaly patterns from
the remaining data. With our designed ensemble prediction, predictions from both layers contribute to
the final anomaly detection decision. Two experiments are conducted on two datasets: 1) IoT device
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attack detections 2) Google Cluster task failure predictions. And the training scenario is also setting
to on-line learning scenario, a small difference is that the on-line learning in this part trains the model
with all accumulated data instead of only latest data. Results show that RAD can continuously im-
prove model’s performance under the presence of noise on labels, comparing to the scenario without
filtering any noisy label data. And the experiment with varying noise level shows that RAD can resist
on high noise level.

RAD indeed improves the result with noisy label data, but it is not flawless. One shortcoming
is that we use only first layer model to do the data selection, meanwhile we train two models simul-
taneously. We should include second layer to do the data selection too. As for that, we propose a
new framework RAD Voting, the difference is that RAD Voting selects training data based on the
conflict of predictions from two models. Also as we observed from RAD experiment, the models are
improving over time, RAD Voting uses thus current model to re-select the training data from old data
batches to improve training data quality. Results show that RAD Voting outperforms RAD in final
accuracy.

In the end of topic three, we introduce another extension of RAD: RAD Active Learning, which
we introduce an expert in the framework, the data selection part is similar as in RAD Voting, but when
there is conflict on the prediction of two models, these uncertain data will send to expert, and expert
will return the ground true labels of these data. The experiment results are very promising, the RAD
Active Learning performs almost as good as the case where there is no noise on labels.

This section briefly introduced the motivations and main contributions in this thesis, the detail of
related work for each topic are given at the beginning of Part. II III and IV, respectively. The very
detailed motivations and contributions are presented in Sec. 2.4 and 3.2. Part. V draws conclusions
on this work and provides insights of future works that would worth investigating on.

1.2 Main Results and Collaborations

1.2.1 Publications
The work developed in this thesis has lead to several contributions which have been published in
various venues, both the control and computing systems communities. All my works have been
partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French
program Investissement d’avenir.

International Journals

• Zilong Zhao, Sophie Cerf, Bogdan Robu, Nicolas Marchand. Event-Based Control for On-
line Training of Neural Networks IEEE Control Systems Letters (L-CSS), vol. 4, no. 3, pp.
773-778, July 2020. [145].

• Minor revision: Zilong Zhao, Sophie Cerf, Bogdan Robu, Nicolas Marchand, Sara Bouchenak.
Enhancing Robustness of On-line Learning Models on Highly Noisy Data. IEEE Transac-
tions on Dependable and Secure Computing (TDSC), Special Issue: Artificial Intelligence/Machine
Learning for Secure Computing

• Submitted: Zilong Zhao, Louis Job, Luc Dugard, Bogdan Robu. Modelling and dynamic
analysis of the domestic demand influence on the economic growth of China. Review of
Development Economics

• TBD: Zilong Zhao, Bogdan Robu, Ioan Landau, Nicolas Marchand, Luc Dugard, Louis Job
Modelling and Optimal Control of MIMO System - French Macroeconomic Model Case.
TBD
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International Conferences

• Zilong Zhao, Louis Job, Luc Dugard, Bogdan Robu. Modelling and dynamic analysis of the
domestic demand influence on the economic growth of China. Conference on International
Development Economics, Nov. 2018, Clermont-Ferrand, France [146]

• Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar,
Lydia Y. Chen. Robust Anomaly Detection on Unreliable Data. 49th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2019), June 2019, Portland, Oregon,
USA [142]. (acceptance rate: 21.4%)
• Zilong Zhao, Sophie Cerf, Bogdan Robu, Nicolas Marchand. Feedback Control for On-line

Training of Neural Networks. 3rd IEEE Conference On Control Technology And Applica-
tions (CCTA 2019), Aug. 2019, Hong Kong, China [143].

• Amirmasoud Ghiassi, Taraneh Younesian, Zilong Zhao, Robert Birke Valerio Schiavoni, Ly-
dia Y. Chen. Robust (Deep) Learning Framework Against Dirty Labels and Beyond.
2019 IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA), Dec. 2019, Los Angeles, California, United States. [48].

1.2.2 Collaborations
Those works has been conducted thanks to fruitful collaborations:

• Pr. Ioan D. Landau (Gipsa-lab, Univ. Grenoble-Alpes) on system identification and control,

• Pr. Luc Dugard (Gipsa-lab, Univ. Grenoble-Alpes) on system identification and control,

• Dr. Lydia Y. Chen (TU Delft) on dirty label data learning and active learning,

• Dr. Robert Birke (ABB Research) on dirty label data learning,

• Pr. Sara Bouchenak (LIRIS lab, INSA-Lyon) on dirty label data learning,

• Dr. Sonia Ben Mokhtar (LIRIS lab, INSA-Lyon) on dirty label data learning,

• Dr. Rui Han (Beijing Institute of Technology) on dirty label data learning,

• Dr. Sophie Cerf (INRIA) on dirty label data learning and event-based control,

1.2.3 Technical contributions
The contributions of the above publications are not only on theoretical area, technical advances are
also made.

• During the preparation for the economic method, we have developed a Ramsey–Cass–Koopmans
model simulator1 based on a matlab project2. All the code are realised in matlab, the interface
is developed by Simulink.

• The learning rate algorithm proposed in [143] and [145] are published as open-source code in
github3. The E/PD control and the event-based learning rate and event-based learning epoch
controls are all packaged as learning rate scheduler in Keras1[26] library, which make users
very easy to adopt to their own projects.

1video demo: https://www.youtube.com/watch?v=iXP0kQ9hig0
2project link: https://www.mathworks.com/company/newsletters/articles/simulating-the-ramsey-cass-koopmans-

model-using-matlab-and-simulink.html
3project link: https://github.com/zhao-zilong/Event-Based-Control-Learning-Rate
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• The framework RAD which is proposed to learn from unreliable data is developed in python
with scikit-learn [105] and Keras libraries. The code of vanilla RAD is published on github4.
As the paper for extension of RAD is still under review, we will publish the code later under
this git5.

• The optimal control framework developed for french macroeconomic model will also be pub-
lished in the same git account as RAD. The framework is coded in Simulink. Since the paper is
not published yet, the code remain confidential for now.

1.3 Thesis Outline
This thesis consists of five parts. The first part gives a general overview of the background, motivation
and contributions of the works. From the second to the forth part, we elaborate the conducted stud-
ies in three topics: 1) System identification and optimal control on Macroeconomic data, 2) Control
theory for on-line training of neural networks and 3) On-line learning from highly unreliable Data
demonstrated on the use case of anomaly detection. The fifth part concludes on the whole contribu-
tions of this thesis, and gives possible directions for future works. Each part is divided in chapters,
the content of each chapter is briefly described as follows.

Part 1 - Generalities.
Chapter 1 - Introduction. First chapter introduces the context of the all three research topics, their

background, and an general picture of the main results achieved. Publications, collaborations and
technical contributions through all the works in this thesis are also given in this chapter. The outline
of this thesis and the read road-map for readers from different academic background are provided in
the end.

Chapter 2 - Background and Motivation. This chapter elaborates the basic ideas of control
theory, system identification and machine learning, which are the three research domains we explored
in this thesis. It shows the objective of control system and how it works, and provides the comparisons
between system identification and machine learning. Motivating cases are showed in this chapter,
which leads to our following research in Part. II III and IV.

Chapter 3 - Objectives and Contributions. This chapter sets forth the objectives of the research
topics in Part. II III and IV, which is mainly the responses to the motivating cases discussed in
Chapter. 2, and explains the theoretical and technical contributions of the works from each topics.

Part 2 - System Identification and Optimal Control on Economic Data.
Chapter 4 - Background on System Identification and Control. This chapter first introduces two

optimal growth models: 1) Solow-Swan model and 2) Ramsey-Cass-Koopmans model. These two
models are not used in later context, but they are giving the ideas how do economists apply optimal
control on economic problem. Then we introduce the background of system identification methods
used in econometrics, such as Augmented Dickey-Fuller test for verifying the stationarity of time
series, or Vector Autoregressive Exogenous (VARX) model to modelize the macroeconomic data. The
background of system identification in automatic is also introduced, such as state space representation.
And one optimal control solution: LInear-Quadratic Regulator (LQR) is also presented.

Chapter 5 - Modelling and Dynamic Analysis of the Domestic Demand Influence on the
Economic. This chapter presents an economic study on China macroeconomic data. Comparing

4project link: https://github.com/zhao-zilong/RAD
5project link: https://github.com/zhao-zilong
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to previous studies, we include the time series from recent years, and add more variables into the
models. Econometrics methods are implemented to identify the economic model, Granger causality
tests are conducted between the economic growth, household final consumption, inward foreign direct
investment and export in China. The experiments are realised on Eviews.

Chapter 6 - Modelling and Optimal Control of MIMO System - French Macroeconomic
Model Case. After identifying the macroeconomic model of China with econometrics methods, this
chapter uses France macroeconomic data, and represent the study in an automatic way. We regard the
model as a Multiple-Input and Multiple-Output (MIMO) system, and represent the model in state-
space form, which can help to design the controller. The optimal controller is designed via Linear-
Quadratic Regulator (LQR). The experiments are conducted with different parameters of LQR, and
perturbations on outputs and constraints on inputs. The system identification experiments are realised
on Gretl and Matlab. The control system is illustrated on Simulink.

Chapter 7 - Conclusion on Economic Model Control. This chapter summarizes Part. II, con-
cludes their results and gives perspectives on future works.

Part 3- Control Theory For On-line Training of Neural Networks.
Chapter 8 - Neural Network and Learning Rate: Background and Related Works. This chap-

ter introduces the Convolutional Neural Network structures, the performance metrics to evaluate the
neural network and Continual (On-line) learning scenario for Part. III. It details different type of
time-based learning rate algorithms, and elaborates the state of the art adaptive-gradient methods.

Chapter 9 - Exponential / Proportional-Derivative Control of Learning Rate. This chapter
introduces the performance-based learning rate algorithm: Exponential (E) / Proportional-Derivative
(PD) control. This study is mainly compared with time-based learning rate methods. It first shows
some motivation cases from fixed learning rate scenario, and gradually presents the P, PD and E/PD
control. The experiments are on two image datasets: CIFAR-10 and Fashion-MNIST. All the exper-
iments are realised based on Keras (tensorflow backend) library, with the help of GPU from google
cloud compute engine.

Chapter 10 - Event-Based Control for Continual Training of Neural Networks. Based on
E/PD control, this chapter introduces two event-based control to improve E/PD in continual learning
scenario: i) Event-Based Learning Rate and ii) Event-Based Learning Epochs. The experiments are
conducted on CIFAR-10 and CIFAR-100, and the results are compared with four state of the art
adaptive gradient method: 1) Adam 2) Nadam 3) AMSGrad and 4) AdaBound.

Chapter 11 - Conclusion on Learning Rate Control. This chapter concludes the Part. 9, gives
the possible direction to extend this work.

Part 4- On-line Learning from Highly Unreliable Data: Anomaly Detection.
Chapter 12 - Noisy Data Learning and Anomaly Detection: Background and Related Works.

This chapter introduces the problems of noisy data learning and anomaly detection. It details the
features of the anomaly detection datasets that we will deal with. The different continual learning
setting for different datasets is presented, and the previous state of the art algorithms that we will
compare with are illustrated with formula and schema.

Chapter 13 - Robust Anomaly Detection on Unreliable Data. Robust Anomaly Detector
(RAD) is a generic framework to deal with the dirty label data learning problem, it is called anomaly
detector is because it is first applied to deal with anomaly detection problem. This chapter presents
the RAD with our designed ensemble prediction method. The evaluations are based on two dataset:
1) IoT thermostat device attack detection and 2) Google cluster task failure prediction. In the end of
evaluation, the limitation of RAD is discussed. The experiments are implemented with Scikit-Learn
library.
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Chapter 14 - Extension of RAD framework for On-line Anomaly Detection for Nosiy Data.
Due to the limitation of RAD presented in Chapter. 13, we propose several extensions of RAD to
improve these deficiencies. RAD Voting and RAD Active Learning are two enhanced version of
RAD based on the additional features of conflicting opinions of classifiers, repetitively cleaning, and
oracle knowledge. To show the broad applicability of RAD (and its extensions) framework, we extend
the evaluation with a new dataset FaceScrub, which is to recognize 100 celebrity faces. RAD Slim
is an adapted version of RAD Active Learning for image dataset. The experiments are implemented
with Keras and Pytorch libraries in this chapter.

Chapter 15 - Conclusion on Noisy Data Learning. This chapter concludes the studies for the
topic of noisy data learning, and provides insights for future works.

Part 5- Conclusions and Perspectives.
The ending part of this thesis is dedicated to conclude the whole contributions from Part. II III

and IV. By analysing the results, we point out some theoretical improvement directions for certain
studies, and possible experimental extensions for current work.

1.4 Read Roadmap
Since this thesis touches various research domains, this section guides the readers from different
backgrounds or with different interests.

For the reader with interest in Economics. The whole Part. II is dedicated to discuss the eco-
nomic problem. If one has economic background, there is no difficulty to understand the Chapter. 5
which studies the economic transition of China. Chapter. 6 also focuses to analyze economic data, it
incorporates french macroeconomic model into the control system to conduct optimal control. There-
fore for the reader without control knowledge, one has to at least read the Sec. 2.1 and Sec. 4.2 to
understand the basic of control system and optimal control.

For the reader with interest in applications of Control Theory. Chapter. 6 applies optimal
control (designed via LQR) on economic model, simulation with 1) varying parameter of LQR, 2)
constraints on inputs and 3) perturbations on outputs are implemented. Part. III explores to integrate
control theory into learning rate algorithm of machine learning. Chapter. 9 proposes a performance-
based feedback control E/PD, which updates the learning rate based on the evolution of historical loss
value. Chapter. 10 two event-based controls: i) event-based learning rate and ii) event-based learning
epochs. First is used to improve E/PD, second one is used to reduce the inefficient training epochs.
Even though these controls are used to improve machine learning algorithms, all the studies in Part. III
have been published in conference and journal of control community, therefore their presentations are
in favor of the reader with control background. E/PD and event-based learning rate are also involved in
the experiments in Chapter. 14 for RAD Slim algorithm, but they are only implemented to accelerate
the training process, not theoretical innovations of these algorithms in that part.

For the reader with interest in Machine Learning. Part. III is dedicated to improve the machine
learning algorithm performance under continual learning scenario. Since the achievement is realised
with control theory. It is better for the reader without control background to read Sec. 2.1 first, to have
an impression of the control system and feedback control. Part. IV is quite independent, readers who
are interested with dirty label data training problem, can skip other chapters.



Chapter 2

Background and Motivation

This chapter gives a general overview of Control Theory, System Identification and Machine Learn-
ing. First, basic concepts are explained as an attempt to depict the global picture of the field, as well
as to give a rapid introduction for readers unfamiliar with the terminology. Then, motivation cases
associated with control theory, system identification and machine learning are discussed.

2.1 Basics of Control Theory
Control theory is a theory that studies how to adjust the characteristics of dynamic systems. The
process under study should evolve over time and be causal (only past and present events impact the
future). Fig. 2.1 presents a system (physical, biological, economic, etc., referred usually as plant)
in control community. In this schema, at least one of the outputs should be able to measure, and at
least one of the inputs can influence the outputs through the configuration of the plant. The plant
can be characterised using the mathematical model which contains a set of parameters that describes
its behaviors. For time-variant system, the parameters of the model can change over time, and for
time-invariant system, we assume these parameters are fixed during the whole time. Depending on
number of inputs and outputs, a system can be either SISO (Single-Input, Single-Output), MIMO
(Multi-Inputs, Multi-Outputs) or a combination of the two.

To sum-up, a system eligible for control should be dynamic, causal and be configurable by at least
one input signal, and observable with at least one output signal [53].

Figure 2.1 – Representation of system in control

Given such a system, three complementary goals can be achieved when using control theory [23]:

• Stability. There are three type of stability in control theory: 1) The stability of a general
dynamical system with no input can be described with Lyapunov stability criteria. That is, any
trajectory with initial conditions around x(0) can be maintained around x(0); 2) A linear system
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is called bounded-input bounded-output (BIBO) stable if its output will stay bounded for any
bounded input; 3) Stability for nonlinear systems that take an input is input-to-state stability
(ISS), which combines Lyapunov stability and a notion similar to BIBO stability. In this thesis,
we mainly focus on the second case BIBO stable. Control can be used to stabilize an unstable
system, but most of all it should ensure to keep stable an originally stable one.

• Tracking. Once the system is ensured to be stable, one may consider the behavior of the plant.
One main objective of control system is to let the output of plant follow our desired trajectory.
There are several indexes to evaluate a controller. Assume the reference is a constant signal,
one index is the precision, which means how close the output and reference. Another index
is the responsetime which represents the time from beginning to the moment output is stable.
Overshoot is also an important index, it measures the maximum value above reference.

• Disturbance Rejection. As no system evolves in a perfectly mastered environment, a control
strategy should be able to deal with exogenous influences. Whether these disturbances can
be measured or not, modeled or not; control theory provides ways to reject them, i.e. mini-
mize their impact on the plant outputs. This aspect of control is called a perturbation rejection
problem.

2.2 Feedback Control
A control system can be regarded as a system with four functions: (i) Measurement, (ii) Comparison,
(iii) Calculation and (iv) Correction. As open loop control strategies are not used in this thesis,
we focus on closed loop (also referred to as feedback) control system in this section. A high-level
representation of a feedback control system can be illustrated in Fig. 2.2. It introduces three extra
elements comparing to system in Fig. 2.1: (1) a reference signal; (2) a controller (containing a control
algorithm); (3) a feedback from output to input. The output (i.e. measurement) signal is compared
to its reference, to which the plant should tend. The difference between the reference and the output
is used as input (referred to as error in Fig. 2.2) for controller to generate a control signal. The idea
behind this design is easy to understand, if the error is big, we need to largely adjust our control signal
to stimulate the plant, so that the output quickly approaches to the reference. If the error is small, we
should carefully adjust the control signal. The objective of this control system is to minimize the
difference between the reference and the output.

The control engineer usually uses the imperfect knowledge of the plant (represented as a state
space or transfer function) to compute the controller algorithm which will make the closed loop plant
comply with the functionality and technical specification.

Figure 2.2 – High-level representation of a feedback control system
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2.3 Basics of System Identification & Machine Learning.
The field of system identification uses statistical methods to build mathematical models of dynamical
systems from measured data [124]. The term system identi f ication is mainly used in the field of
control engineering.

Machine learning (ML) is the study of computer algorithms that improve automatically through
experience [97]. Machine learning algorithms build a mathematical model based on sample data,
known as "training data", in order to make predictions or decisions without being explicitly pro-
grammed to do so [74, 17]. The term machine learning is mainly used in computer science field.

We can see that both notions build mathematical models, they all try to use available historical
data to approximate the function (relation) between input and output. The main difference between
these two notions reside in the usage. While some of system identification algorithms care more if
the estimated model fits well the training data (e.g. model-driven estimation), in order to build an
efficient algorithm. Machine learning cares more if the estimated model can predict well in the new
data. That is why machine learning is also referred to as predictive analytics.

The procedure of performing the system identification and machine learning are almost same. The
high-level steps to perform system identification and machine learning on a dataset can be summarized
as showed in Fig. 1.1: 1) Data Preparation, 2) Parameter Estimation / Learning or Training, and 3)
System Validation / Testing.

• Data Preparation. When we deal with a dataset, we almost never use the original data to
estimate the model. For instance, the stationarity is important if we do the regression on time
series. If the time series are non-stationary, the regression gives spurious results (see Part. II).
The cleanness of training data is vital for training machine learning model, if the collected data
are polluted, the true output yi of input xi is not reliable, the trained model can be corrupted
(see Part. IV). To solve above problems, we need to deal with the data before feeding data to
algorithm.

• Parameter Estimation / Learning or Training. The parameter estimation in automatic control
is similar to the term of Learning or Training for machine learning. It is the process to approx-
imate the functions between input and output by mathematical methods. For linear regression,
Ordinary Least Square (OLS) and Maximum Likelihood Estimationis (MLE) are widely used.
And for more complex task such as face recognition, neural network is the common choice,
then convolution and gradient (Sec. 8.1) are necessary.

• System Validation / Testing . The main difference between System Identification in automatic
and Machine Learning in computer science is in this step. For system identification, to validate
the estimated model, we use the data which is used to train the model to test the model. The
aim is to check if the model has perfectly fitted on the data. If the residuals from the validation
are white noise, we believe the estimated model is good. In machine learning, before training
the model, we need to split the whole dataset into one training dataset and one testing dataset.
The ratio between testing and training dataset is often 1:2 or 1:3. Only training dataset is used
to train the model, and only testing dataset is used to test the model.

Above three points are only high-level skeleton of the pipeline, there are also other details when
we implement. For example, if we perform the auto-regression on time series, before estimating pa-
rameters of model in parameter estimation step, we need to estimate the order of model first, this part
is discussed in Sec. 5.4 and Sec. 6.2.2. Estimation of model’s order can help to build a model with
least parameters but still valid. This step as well as model order reduction usually does not appear in
machine learning, one reason can be the interpretability of the model, from the highly interpretable
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lasso regression to impenetrable neural networks, but they generally sacrifice interpretability for pre-
dictive power. Since many of the model’s structures are unexplainable, it will be difficult to justify
any reduction of the model.

2.4 Motivation Cases
In this section, we provides some real world cases which motivate us to perform our studies in fol-
lowing three parts.

2.4.1 Control Theory on Macroeconomic Model
First, let us check the quarterly GDP growth rate from 2005Q1 to 2018Q1 in Fig. 2.3. EA denotes
to Euro Area. EU and US denote to European Union and United State. One can observe a big
drop around 2008Q4 and 2009Q1, which is the period of the 2008 financial crisis. If we see the
macroeconomic system as the plant we introduced in Sec. 2.1, then GDP can be modelized as one
of the outputs. In macroeconomic, we know there are several economic variables we can control,
for instance the interest rate in central bank, the oil price, the public expenditure from government,
etc. We can see these variables as the inputs of the plant, then we can easily modelize the economic
crisis problem as control problem. We can also add perturbations on outputs, constraints on inputs.
By simulating the system, we can emulate different kind of crisis on different outputs. Observing the
reaction of inputs during the system recovery process provides very good political implications for
economists to study. This study is explored in Part. II.

Figure 2.3 – Quarterly GDP Growth Rate from 2005Q1 to 2018Q1 (Source: Eurostat)

2.4.2 On-line Training of Neural Network
On-line training (or continual learning) is widely used in many scenarios, when there is not much
available data at beginning. For example shopping site or Netflix, when a new user comes in, there
is no historical information of the user, then the recommended products or films are not well fitted to
user’s taste. As the user generates more data, the recommendations are more accurate.

There are two scenarios of on-line learning setting: 1) the size of data is relatively small, every
time a user generates new data, we can retrain the model with all accumulated historical data. 2) if
the size of data is large, when there is newly generated data available, we can only use the new data
to train the model instead of re-learning with all the accumulated data.
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Apart from the data size, time interval of data generation is another factor to consider, it challenges
the convergence speed of algorithm. Learning rate and Gradient are two key parts which influence
the convergence speed of machine learning algorithms. After studying the previous strategies, they
can be summarized as: (1) time-based learning rate, (2) adaptive gradient. The problem of time-based
method is that its learning rate is prefixed before training process, which makes it impossible to react,
even though sometimes it can accelerate the learning speed as we are far from optimum, or slow down
the learning speed as we are close to the optimum in case we do not skip it. For adaptive gradient
methods, there are studies show that adaptive gradient methods do not generalize as well as stochastic
descent gradient (SGD). These methods tend to perform well in the initial portion of training but are
outperformed by SGD at later stages of training.

Above studies drive us to think: If we can develop a performance-based learning rate algorithm
using SGD? So that we can overcome the shortcomings in time-based learning rate and adaptive
gradient methods. The performance-based controller can be designed to solve this problem.

Actually the following thoughts come out after we finished the performance-based controller. For
a typical machine learning setting, we need to fix a number of training epochs before we launch the
training process. Since we developed the performance-based controller, the converging speed of the
model is largely accelerated, and as the algorithm is already converged after several epochs in the
beginning, the following training epochs becomes less useful. This phenomenon drives us to propose
an event-based control to decide when we stop the learning, that will shapely reduce the training
epochs while maintaining a good model. Above studies are performed in Part. III.

2.4.3 Dirty Label Data Learning
When we try to build a specific image classification model, the first step is to prepare a labelled
dataset. There are several ways to get high-quality labelled data, for example, explore pre-labelled
public datasets or leveraging the crowd-sourcing service. But in most case, we need to harvest our
own training data and labels from free sources. Here we illustrate the struggles one can experience
when construct their own dataset and explain why we need to solve this problem.

Imagine one wants to build an image classification model to distinguish if an image is airplane,
and we assume that there is no free available pre-labelled public datasets. Then the fastest way we
can think about is to use google. If we search keyword "airplane" in Google image search, the first
pages will show the images as in Fig. 2.4. There are different type of airplanes, and this is what we
want to collect.

(a) (b)

Figure 2.4 – Correct Airplane Images.



18

In reality, if we want to quickly gather as many as possible the images, one useful tool is the web
crawler, it will help us to thousands of images by running a few lines of code instead of downloading
them one by one by clicking. However, if we check the later pages of google results, other relevant
images pop up. For instance, the images showed in Fig. 2.5 are the cabinet of airplane and a cartoon
image of an airplane. To solve this problem, one can manually check all the images. But when the
dataset is huge, that can be really time consuming or even impossible. That motivates us to propose
a proper algorithm to address this problem to mitigate the influence of dirty labelled data on final
classification model.

(a) (b)

Figure 2.5 – Undesired Airplane Images.



Chapter 3

Objectives and Contributions

In this context of association of control theory, system identification and machine learning, this thesis
explores the problems which can be grouped into three subjects which will be presented in Part. II,
III and IV. The main objective of this thesis are detailed as follows:

3.1 Objectives

Part. II focuses on the problem of system identification and optimal control of the macroeconomic
model, the study is based on the economic data from China and France. In this study, we will show
the methods used in Economics and Automatic to perform the system identification. After that, we
will show two use cases on how economists achieve optimal growth for economic models (Solow-
Swan model and Ramsey-Koopmans-Cass model). And then we will introduce our designed optimal
control model, one advantage of our algorithm is that it can take into account of constraints on inputs
and the state of the system as well as perturbations on outputs .

Part. III incorporates control theory into learning rate algorithms, aiming to accelerate the ma-
chine learning process on continual learning scenario. The state of the art algorithms can roughly
be divided into two categories: i) time-based learning rate, and ii) adaptive gradient learning rate.
The algorithms from these two groups all have their own drawbacks. Time-based learning rate can
not adjust its learning rate regards to the training data and training phase, which leads to a slow con-
verge speed of the training process. Adaptive gradient methods performs better in converge speed
comparing to time-based learning rate, but its final accuracy tends to be worse than the method based
on the stochastic gradient descent (SGD). Therefore, we propose a performance-based learning rate
algorithms, which not only converge as fast as (or even faster) the adaptive gradient methods, but
also ensure no compromise on final accuracy as it is based on SGD. Besides the performance-based
learning rate, we also propose an event-based control algorithm which aims to automatically decide
when the training process stops and forwards to next training batch in continual learning scenario. To
massively cut off inefficient training epochs but still accelerate the learning process.

Part. IV sheds light on dirty label data problem, which means that, as the training data quality is
difficult to be guaranteed, we design the algorithms to alleviate the influences of dirty label data on the
model. The algorithms are compared with several state of the art, in respect of final accuracy, final loss
value, converging speed and stability of the performance. The experiments are implemented on three
datasets: 1) IoT device attack detection, 2) Cluster task failure prediction and 3) face recognition, in
order to show the board applicability on different type of data.
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3.2 Contributions of the Thesis
In this section, we will summarize the contributions of this thesis from each chapter that presented in
Part. II, III and IV.

3.2.1 Dynamic Analysis of China Macroeconomic Model
This study uses the classical economic methods to perform system identification, comparing to pre-
vious researches, we extends the time series with recent year data, include new variable: Household
Consumption into the macroeconomic model. We also implement tests to show the Granger causal-
ities between variables. Many studies on the early stage of Open Door Policy have shown that there
are two-way Granger causalities between Export, FDI (Foreign Direct Investment) and GDP (Gross
Domestic Production), but our study shows that with recent year data, the growth of FDI and the
growth of GDP have no two-way Granger causalities any more, but the growth of Consumption does.

3.2.2 Optimal Control on France Macroeconomic Model
This study is based on France’s macroeconomic data, we perform the system identification as we
typically do in Automatic. After estimating the model, the optimal control solution: LQR is designed
for our problem which is to maintain a constant GDP increasing ratio. And once the system is stable,
we introduce the perturbations on all outputs (i.e. IMP. EXP, GDP). Introducing shock on variables in
VAR has been well studied in economic area by impulse response function (IRF). IRF traces the ef-
fects of an innovation shock to one variable on the response of all variables in the system. Comparing
to IRF, our approach not only observes the changes after the shock, but also intervenes the process of
recovery. Our objective is to use all the available resources to help the model regain the stability, re-
turn to the level before the shock. We also impose the constraints on inputs, all these factors together
help us to well emulate the real world situation (e.g. 2008 financial crisis and Covid-19 pandemic).
The whole control system is realised with Simulink (a handy simulating environment), we think this
tool can help economist to better estimate the recover trajectory of the economy.

3.2.3 Exponential / Proportional-Derivative Control of Learning Rate
When performing image classification tasks with neural networks, often comes the issue of on-line
training, from sequential batches of data. The interval between data batch can be short and the data
distribution from one batch to another can vary a lot. All these problems lead us to design a better
algorithm, which can make the training process converge faster so that we can reduce training time,
and the algorithm should also be stable when we change the data batch from one to another. In addi-
tion to that, our algorithm should not sacrifice its final accuracy and final loss for maintaining stable
and faster converging speed. That is why we propose a performance-based learning rate algorithm -
Exponential (E) / Proportional-Derivative (PD) control, it converges faster than the compared state of
the art algorithm, it’s much stable than others near its end of training, and its final accuracy and loss
is lower than the comparisons.

3.2.4 Event-Based Control for Continual Training of Neural Networks
This work is an extension work based on E/PD control we mentioned in last section. We first propose
an enhanced version of E/PD - Event-Based E/PD. It can prevent the learning rate to decrease when
loss value continuously decreases. The result shows that this small change indeed improves the model
in all the index we mentioned in last section.
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We also propose a second event-based control based on E/PD, this control is based on our ob-
servation that when we implement E/PD on continual learning scenario, the significant improvement
in the learning only occurs at the beginning when loading a new batch, the accuracy and loss value
evolve slowly afterwards. Therefore, we implement an event-based control to inspect the record of
the loss value. If the loss record has the tendency to increase, showing little learning efficiency, we
will drop the rest learning epochs for current data batch. In the experiment with dataset CIFAR10, it
could save up to 67% training epochs.

3.2.5 Robust Anomaly Detection (RAD) on Unreliable Data
As dataset gets bigger and bigger, the data quality becomes much difficult to control than before.
Dirty label data learning is an important topic for machine learning in recent years, And in this work,
we use anomaly detection task as an example to address this problem. The learning scenario is setting
on continual learning, we propose a two-layer framework for Robust Anomaly Detection - RAD. The
first layer (called label quality model) mainly aims at differentiating the label quality, i.e., noisy v.s.
true labels, for each batch of new data and only "clean" data points are fed in the second layer. The
major job of second layer (called anomaly classifier) is to predict the coming-out event, that can be in
multiple classes of (non)anomalies, depending on the specific anomaly use case. Both the prediction
from label model and anomaly classifier contribute to the final decision of anomaly detection, using
our designed ensemble prediction technique. The results show that RAD outperforms the case when
there is no data selection for training. The experiment with varying noise level on labels shows that
RAD can resist high noise level in the data label.

3.2.6 Extension of RAD framework for On-line Anomaly Detection for Noisy
Data

This work is an extension of last section. The problem studied and experimental setting remain
the same for same the datasets. we extend RAD with additional features of conflicting opinions
of classifiers and repetitively cleaning as RAD Voting, and with oracle knowledge as RAD Active
Learning. To deal with complex data such as image, we also propose another version of RAD Active
Learning, namely RAD Slim, which instead of use two-layer framework, RAD Slim is reduced to
one layer, and delegate the role of second layer to oracle. To test RAD Slim, we introduce a new face
recognition dataset: FaceScrub with 100 celebrity faces.

RAD Voting solved the problem that two models converge over time in RAD, because we let
second layer to join the data selection process, and that injects more diversities of our chosen training
data. And with the help of oracle, our results show that with our framework, it can reach almost
the same accuracy as there is no noise (under 30% noise level). By comparison with the designed
experiment (i.e. PreSelect Oracle), we clearly show that if we randomly choose the data to ask oracle,
the performance is much worse than RAD Active Learning and RAD Slim.





Part II

System Identification and Optimal Control
on Economic Data: Applications on China

and France
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There are many concepts both used in economic and automatic domain to perform system identi-
fication, such as: using VARX (Vector Autoregressive Exogenous) model to represent system, using
the Akaike information criterion (AIC) for estimating model order, and using the Ordinary Least
Square (OLS) for parameter estimation. In this part, we perform the system identification in two
studies, one uses only the methods which commonly used in economic area, another will introduce
some methods merged from automatic area. Most of their steps are the same, but there are still some
differences (e.g. different way of identifying model order). In second study, we also apply the opti-
mal control via linear–quadratic regulator (LQR) on the estimated model, introducing constraints on
inputs, perturbation on outputs, to show that our designed controller can really adopt to the real world
problem.

In Chapter. 4, we introduce some basic concepts in details which we will use in the later analy-
sis, such as the Augmented Dickey–Fuller(ADF) Test which is used to determine if a time series is
stationary, or Linear–Quadratic Regulator (LQR) which is the technique we will adapt to design our
controller for optimal control. In Chapter. 5, we perform an analysis of the trend of China’s economic
transition with the system identification methods that are widely used in economic domain. This study
is performed with China’s macroeconomic data. Comparing to previous studies, we include data from
recent years, also take new variables into consideration.

As the research progresses, we want to introduce more variables and richer data (e.g. data in
quarterly not yearly), but some Chinese data (e.g. total investment or public expenditure) are very
limited, therefore Chapter. 6 implements a study with the macroeconomic data of France, we first
perform the system identification, then transform the model to state space representation and carry
out the optimal control via LQR. Constraints on inputs and perturbations on outputs are considered
during the control in this study, to adopt to real world situation. Chapter. 7 concludes these two
studies, and also indicates the possible future extensions.





Chapter 4

Background on System Identification and
Optimal Control in Economics and
Automatic

In this chapter, we first introduce two optimal growth models from macroeconomic. These two models
are not used in the later analysis, but they clearly show how the economists use dynamic optimization
to solve macroeconomic problem. Then introduce the methods used during the procedure of system
identification in economic and automatic domain. This procedure consists of data preparation and
system estimation. In addition to that, the Granger Causality (which is a statistical concept of causality
that is based on prediction) is studied. That will help us to better understand the models. We will also
present the technique to formalize the system on state space representation. And the algorithms used
in automatic to perform optimal control on system.

4.1 Economic Area

4.1.1 Optimal Growth Model
Before introducing two optimal growth models, all the symbols used for the two models are listed in
Tab. 4.1.

4.1.1.1 Solow-Swan Model

The basic version of Solow-Swan model [125, 127] considers a closed economy producing one single
good using both labour and capital. it assumes there is perpetual full employment of labour, all
the savings are used to invest. It takes the technology progress as given and the constant saving
rate as exogenous. Assume all the firms have access to the same production function, the aggregate
production function (Cobb Douglas production function) for the unique final good is:

Y (t) = A(t)K(t)αL(t)1−α (4.1)

It can be written as output per effective unit of labour y(t), which is a measure for wealth creation:

y(t) =
Y (t)

A(t)L(t)
= k(t)α (4.2)

where k(t) = K(t)/L(t), it is the capital intensity, the capital stock per unit of effective labour. The
key equation of the Solow-Swan model is:

k̇ = sk(t)α − (n+g+δ )k(t) (4.3)
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Table 4.1 – Symbol description

Symbol Description

n labor growth rate
s saving rate
g technology growth rate
δ depreciation rate
r interest rate
ρ discount rate (Appendix .2)
H number of household

Y (t) total production in Solow-Swan model
F(t) total production in RCK model

L(t) = L(0) · ent total labour
K(t) total capital

A(t) = A(0) · egt total factor productivity
C(t) consumption per worker

u(C(t)) instantaneous utility function
W wage per worker
B total family wealth
U household lifetime utility function

the term sk(t)α corresponds to the same time the amounts of save and investment, it is the actual
investment per unit of effective labour: the fraction s of the output per unit of effective labour y(t)
that is saved and invested. The second term, (n+ g+ δ )k(t) is the “break-even investment”: the
amount of investment that must be invested to prevent k(t) from falling. In the steady state where k(t)
= k(t)∗, one can easily to notice that k(t)∗ can only reside on where k̇(t) = 0, which means investment
(i.e. saving) equals depreciation, this is also called equilibrium point. Fig. 4.1 clearly shows this
relation, it represents y(t) = f (k(t)) = k(t)α , the corresponding k∗ where makes the two curves cross
is where s(k(t)∗)α = (n+g+δ )k(t)∗. When k(t) = k1(t), s(k1(t))α > (n+g+δ )k1(t), then k̇(t)> 0,
k∗ will move towards to k(t)∗. When k(t) = k2(t), s(k2(t))α < (n+g+δ )k2(t), then k̇(t)< 0, k will
also move towards to k(t)∗. Therefore in Solow-Swan model, once all the parameters are fixed, the k
is constant. From Fig. 4.2, we can see that once saving rate changes, the equilibrium point changes.

Figure 4.1 – Solow-Swan model equilibrium.
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Figure 4.2 – Solow-Swan model changing equilibrium with different saving rate.

4.1.1.2 Ramsey Cass Koopmans (RCK) Model

Solow-Swan model assumes that aggregate consumption is simply a linear function of aggregate out-
put, so that the fraction of output devoted to investment (=saving in a closed economy) is also constant.
This is a strong assumption, and in reality, the household consumption is much more complex than
simply a fixed proportion of income. Our consumption is definitely influenced by our anticipation to
future incomes. Therefore, RCK adds one layer to the Solow-Swan model: it allows households to
make optimal consumption/saving decisions at the microeconomic level, given the environment they
are facing. As a result, the evolution of the capital stock will reflect the interactions between utility-
maximizing households (supplying savings) and profit-maximizing firms (demanding investment). In
this model, the saving rate is not constant anymore.

• Assumption: There are some background assumptions for RCK model. 1) The technology is
the same as in Solow-Swan model, it grows exogenously at rate Ȧ(t)/A(t) = g. 2) There is
no depreciation: δ = 0. 3) Firms hire workers at real wage W (t) at time t and rent capital at
rate r(t) to maximize profits. 4) K(0), A(0) and L(0) all given and all > 0. 5) Each household
grows at rate n. 6) Each member of household provides 1 unit of labour. 7) Each household
receives income from the following sources: labour income (wages of the household members)
and capital income (from renting out capital to the firms) [54].

• Firm: Here in RCK model, we consider to use the same production model as Eq. (4.1). There-
fore:

F(t) = A(t)K(t)αL(t)1−α (4.4)

Since firms pay a price r(t) for renting a unit of capital and there is no depreciation, they will
equate the marginal product of capital: r(t) = ∂F(K,AL)/∂K. Since ∂F(K,AL)/∂K = f ′(k),
where f (k)≡ F(k,1) and k = K/(AL), firms will rent capital up to the point where:

f ′(k(t)) = r(t) (4.5)

• Labour: Firms will hire workers up to the point where the real wage W(t) equals the marginal
product of labor ∂F(K,AL)/∂L. To express the marginal product of labor in terms of f (·),
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observe that:

∂F(K,AL)
∂L

=
∂

∂L
AL f (K/(AL))

= A f (k)−AL f ′(k)(
K

AL2 )

= A[ f (k)− k f ′(k)] (4.6)

we define the wage per effective unit of labour:

w(t) =W (t)/A(t) (4.7)

then w(t) satisfies:

w(t) = f (k)− k f ′(k) (4.8)
f (k) = k f ′(k)+w

• Household: Each household has to decide how much to consume and how much to save to
maximize the lifetime utility:

U =
∫

∞

t=0
e−ρtu(C(t))

L(t)
H

dx (4.9)

subject to the following dynamic budget constraint:

Ḃ(t) = r(t)B(t)+W (t)L(t)−C(t)L(t) (4.10)

which means that the family wealth increase comes from the interest of family wealth plus total
wages minus total consumption. Of course, in equilibrium, we will need to have B(t) = K(t),
since in a closed economy, the stock of savings by households must be equal to the stock of
physical capital. The household takes B(0) = K(0) > 0 as given.

For unility function, RCK model chooses a constant relative risk aversion [110], more details
of risk aversion is given at Appendix .3 which:

u(C(t)) =
C(t)1−θ

1−θ
;θ > 0;ρ−n− (1−θ)g > 0 (4.11)

where θ is the coefficient of relative risk aversion, defined as −Cu′′(C)/u′(C). 1/θ is the
inter-temporal elasticity of substitution (inter-temporal elasticity of substitution is explained in
Appendix .1). θ governs the curvature of utility function.

Since we have considered technology progress, we call AL is the effective supply of labour.
Then we have:

c(t) =C(t)/A(t) (4.12)

where c(t) denotes the consumption per unit of effective labour. Same calculations for B to have
the unit of effective labour:

b(t) = B(t)/(A(t)L(t)) (4.13)

Now, instantaneous utility function u(C(t)) can be written as:

u(C(t)) =
(A(t)c(t))1−θ

1−θ
(4.14)

= A(0)1−θ e(1−θ)gtu(c(t)) (4.15)
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and U can be written as:

U =
∫

∞

t=0
e−ρtu(C(t))

L(t)
H

dx

=
A(0)1−θ L(0)

H

∫
∞

t=0
e−(ρ−n−(1−θ)g)tu(c(t))dx (4.16)

∝

∫
∞

t=0
e−β tu(c(t))dx

where β = ρ − n− (1− θ)g > 0 by assumption, which is to make sure the U do not diverge.
From Eq. 4.13, we could calculate the relation between ˙B(t) and ˙b(t) (Inference process is
provided in Appendix .4):

Ḃ(t) = ḃ(t)AL+b(g+n)AL (4.17)

From Eq.(4.10), (4.12), (4.7), (4.13) and (4.17). Eq.(4.10) can be rewritten as :

ḃ(t) = (r(t)−g−n)b(t)+w(t)− c(t) (4.18)

In this problem, c(t) is the control variable, while b(t) is the state variable.

Now we will talk about the maximum principle to solve the problem defined in Eq. (4.16) [121,
54]. Let c∗(t) be a consumption sequence that solves this problem. Then there exists a co-state
variable λ (t)>= 0 such that the Hamiltonian:

H (c(t),b(t),λ (t)) = u(c(t))+λ (t)[(r(t)−g−n)b(t)+w(t)− c(t)] (4.19)

is maximized at c∗(t) given λ (t) and b(t):

∂H

∂c
(c∗(t),b(t),λ (t)) = 0 (4.20)

at all times. Furthermore, the co-state variable satisfies the following differential equation:

λ̇ (t) = βλ (t)− ∂H

∂c
(c∗(t),b(t),λ (t)) (4.21)

Finally, the co-state variable λ (t) satisfies the Transversality Condition (TC):

lim
t→∞

b(t)λ (t)e−β t ≤ 0 (4.22)

From Eq. 4.20, we have equation:

u′(c(t)) = c(t)−λ = λ (t) (4.23)

From Eq. 4.21, we have equation:

λ̇ (t) = βλ (t)−λ (t)(r(t)−g−n) (4.24)

with condition (4.11), (4.23) and (4.24). We could get following equation (Inference process is
provided in Appendix .5):

λ̇ (t)
λ (t)

=−θ
ċ(t)
c(t)

= β − (r(t)−g−n) (4.25)
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then we could replace β with its definition in Eq. (4.16).

ċ(t)
c(t)

=
r(t)−g−n−β

θ

=
r(t)−ρ−θg

θ
(4.26)

Until now, we have shown that the optimal consumption/saving problem satisfies the following
two equations:

ċ(t)
c(t)

=
f ′(k(t))−ρ−θg

θ
(4.27)

ḃ(t) = (r(t)−g−n)b(t)+w(t)− c(t)

Remember that equilibrium on the asset market requires that family wealth equals the stock of
capital: b(t) = k(t). With condition in (4.5) and (4.8) , substituting these expressions, we obtain
a dynamic system:

ċ(t)
c(t)

=
f ′(k(t))−ρ−θg

θ

k̇(t) = f (k(t))− c(t)− (g+n)k(t) (4.28)

Figure. 4.3 shows the dynamic of the system. g(c) and g(k) mean the gradient of c and k. The
area below the g(k) = 0 curve indicates the area where g(k) > 0, the area above the g(k) = 0
curve indicates the area where g(k)< 0. The left area the line g(c) = 0 indicates the area where
g(c)> 0, the right area the line g(c) = 0 indicates the area where g(c)< 0.
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Figure 4.3 – Phase space diagram of the Ramsey-Cass-Koopmans model. The blue line represents the
dynamic adjustment (or saddle) path of the economy in which all the constraints present in the model
are satisfied. It is a stable path of the dynamic system. The red lines represent dynamic paths which
are ruled out by the transversality condition.

Above section introduced two optimal growth models, it gives an overview of how to achieve
optimal growth under different economic conditions. Their assumptions and solutions are well-
established and well-studied, and they focus on the entire economic cycle. In the following sections
for Economic Area, we will focus on details of process of identifying the mathematics relations be-
tween macroeconomic variables, the method can be used to modelize the entire economic system, but
can also be used to modelize part of it, using real world data to reveal their relations (There may exist
or not).

4.1.2 Augmented Dickey–Fuller (ADF) Test
In statistics and econometrics, an augmented Dickey–Fuller test (ADF) tests the null hypothesis that
if a unit root is present in a time series sample. If one time series does not contain unit root, we say
the time series is stationary. The stationarity is important if we do the regression on time series. If the
time series are non-stationary, the regression gives spurious results. [55].

As the name suggest, the ADF test is an ‘augmented’ version of the Dickey Fuller test. The
Dickey-Fuller (DF) test can be written as:

∆yt = α +β t + γyt−1 + εt (4.29)

where α is constant, β is the coefficient on the time trend, yt−1 is the value of y at time t − 1,
∆yt = yt − yt−1. The null hypothesis (H0) here is γ = 0, which means time series is non-stationary.
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The The ADF test expands the Dickey-Fuller test equation to include high order regressive process in
the model. The H0 holds the same, the ADF test can be written as:

∆yt = α +β t + γyt−1 +δ1∆yt−1 · · ·+δp−1∆yt−p+1 + εt (4.30)

As the null hypothesis assumes the presence of unit root, the p-value obtained should be lower than a
significant level (e.g. 0.05) in order to reject the null hypothesis. Thereby, inferring that the series is
stationary. ADF test is implemented in Sec. 5.4 and Sec. 6.2.

4.1.3 Vector Autoregession (VAR)
Vector autoregression (VAR) is a stochastic process model used to capture the linear interdependen-
cies among multiple time series. It is useful when one is interested in predicting multiple time series
variables using a single model. VAR extends the idea of univariate autoregression to k time series
regressions. Eq. (4.31) shows a VAR(p) model of k variables, where p is the lag order of model, yt is
a vector of length k and each Ai is a k × k matrix.

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + et (4.31)

Eq. (4.31) can be expanded to eq. (4.32) by the equation of regression notation. The matrix notion of
eq. (4.31) is illustrated in eq. (4.33).

y1,t = c1+a1
1,1y1,t−1+a1

1,2y2,t−1+ · · ·+a1
1,kyk,t−1+ · · ·+ap

1,1y1,t−p+ap
1,2y2,t−p+ · · ·+ap

1,kyk,t−p+e1,t

y2,t = c2+a1
2,1y1,t−1+a1

2,2y2,t−1+ · · ·+a1
2,kyk,t−1+ · · ·+ap

2,1y1,t−p+ap
2,2y2,t−p+ · · ·+ap

2,kyk,t−p+e2,t
...

yk,t = ck+a1
k,1y1,t−1+a1

k,2y2,t−1+ · · ·+a1
k,kyk,t−1+ · · ·+ap

k,1y1,t−p+ap
k,2y2,t−p+ · · ·+ap

k,kyk,t−p+ek,t
(4.32)


y1,t
y2,t

...
yk,t

=


c1
c2
...

ck

+


a1
1,1 a1

1,2 · · · a1
1,k

a1
2,1 a1

2,2 · · · a1
2,k

...
... . . . ...

a1
k,1 a1

k,2 · · · a1
k,k




y1,t−1
y2,t−1

...
yk,t−1

+ · · ·+


ap
1,1 ap

1,2 · · · ap
1,k

ap
2,1 ap

2,2 · · · ap
2,k

...
... . . . ...

ap
k,1 ap

k,2 · · · ap
k,k




y1,t−p
y2,t−p

...
yk,t−p

+


e1,t
e2,t

...
ek,t


(4.33)

4.1.4 Cointegration Test
Before introducing cointegration, let us first check the notion of Order of Integration. In statistics,
the order of integration, denoted I(d), of a time series is a summary statistic, which reports the min-
imum number of differences required to obtain a stationary series. I(0) is the series that are already
stationary without any differencing.

Cointegration is a statistical property of time series introduced in economic analysis, by Engle
and Granger (1987) [39]. In simple terms, cointegration makes it possible to detect the long-term
relationship between two or more time series. For a set of time series, if all of the series are integrated
of order d, if there exists a linear combination of this set of time series, which is integrated of order
less than d, then the collection is said to be co-integrated. For instance when Xt and Yt are I(1),
and if there is a θ such that Yt − θXt is I(0), then Xt and Yt are cointegrated. Cointegration test is
implemented in Sec. 5.4.2.
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4.1.5 Vector Error Correction Model (VECM)
Following the example given in the end of Sec. 4.1.4, if Xt and Yt are I(1) and cointegrated, their differ-
ences are stationary and can be modeled in a VAR which is augmented by the regressor Yt−1−θXt−1.
This is called a vector error correction model (VECM) and Yt − θXt is called the error correction
term. Lagged values of the error correction term are useful for predicting ∆Xt and/or ∆Yt . The
VECM model makes it possible to study short-term fluctuations around the long-term equilibrium. It
is implemented in Sec. 5.4.3.

4.1.6 Granger Causality Test
The Granger causality [56] is a statistical concept of causality that is based on prediction. Granger
causality test is for determining whether one time series is useful in forecasting another. Since the
question of "true causality" is deeply philosophical, we should understand the Granger causality more
like "predictive causality", and we should avoid to use the term "X1 cause X2", but "X1 granger-cause
X2" if it can be shown.

G-causality is normally tested in the context of linear regression models. For illustration, consider
a bivariate linear autoregressive model of two variables:

X1(t) =
p

∑
j=1

A11, jX1(t− j)+
p

∑
j=1

A12, jX2(t− j)+E1(t)

X2(t) =
p

∑
j=1

A21, jX1(t− j)+
p

∑
j=1

A22, jX2(t− j)+E2(t) (4.34)

where p is the order of model, A is the coefficient matrix, E1 and E1 are residuals for each esti-
mation. If the variance of E1 (or E2) is reduced by inclusion of X2 (or X1) term in the first (or second)
equation, then it is said that X2 (or X1) granger-cause X1 (or X2).

Granger causality is used at Sec. 5.4.4.

4.1.7 Vector Autoregressive Exogenous (VARX) model
Recall the eq. (4.31), the VARX equation is like:

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p +B1ut−1 +B2ut−2 + · · ·+Bqut−q + et (4.35)

where ui is the exogenous inputs and Bi are their coefficient matrix. It is basically the VAR model
with external inputs. VARX is implemented in Sec. 6.2.3.

4.2 Automatic Area

4.2.1 State Space Representation
State space representation is commonly used in control engineering, and it has also become widespread
in macroeconomics and finance over last decades [40]. Some common examples are autoregressive
moving average (ARMA) models, time varying regression models, and dynamic linear models with
unobserved components. A state space is the set of all possible configurations of a system. We use
state space representation because it is easier to implement a control algorithm. In this thesis, we only
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focus on discrete-time systems. The most general state-space representation of a linear system with p
inputs, q outputs and n state variables is written in the following form:

x(k+1) = A · x(k)+B ·u(k)
y(k) =C · x(k)+D ·u(k) (4.36)

where k ∈ Z, x(·) is called state vector, x(·) ∈ Rn; y(·) is called output vector, y(·) ∈ Rq; A(·) is the
"state (or system) matrix", dim[A(·)] =Rn×n; B(·) is the "input matrix", dim[B(·)] =Rn×p; C(·) is the
"output matrix", dim[C(·)] =Rq×n; D(·) is the "feedthrough (or feedforward) matrix" (in cases where
the system model does not have a direct feedthrough, D(·) is the zero matrix); dim[D(·)] =Rq×p. For
the control system, there are three important properties to verify:

4.2.1.1 Stability

For the discrete-time state space system, the system is stable if the magnitude of the eigenvalues of
the system matrix A is less than 1.

4.2.1.2 Controllability

Controllability is an important property of a control system. The state controllability condition implies
that it is possible – by admissible inputs – to steer the states from any initial value to any final value
within some finite time window. Mathematically, a system is controllable if for all the time span
[ki,k j], for all the state xi,x j ∈ X where x(ki) = xi, there exists a control u applied during time span
[ki,k j] to have x(k j) = x j.

In practice, to verify the controllability for a state space system, it is to check if the controllability
matrix is full rank:

rank(Mc) = rank
[
B AB A2B . . . An−1B

]
= n (4.37)

where n is the number of the state variables.

4.2.1.3 Observability

Observability is a measure for how well internal states of a system can be inferred by knowledge of its
external outputs. A system is said to be observable if the observation of its inputs and outputs during
a finite time interval [ki,k j], allows to determine the initial state x(ki), and therefore, by integration of
the equation of state, to know x(·) at any time belonging to the interval [ki,k j].

rank(Mb) = rank


C

CA
...

CAn−1

= n (4.38)

The initial condition is determined if the so-called observability matrix Mb has rank n, where n is the
number of the state variables.

State space representation is used in Sec. 6.2.4.
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4.2.2 Linear–Quadratic Regulator (LQR)
The theory of optimal control is concerned with operating a dynamic system at minimum cost. The
case where the system dynamics are described by a set of linear differential equations and the cost is
described by a quadratic function is called the LQ problem [4]. One of the main results in the theory is
that the solution is provided by the linear–quadratic regulator (LQR), which is a feedback controller.
For a discrete-time linear system:

X(k+1) = A ·X(k)+B ·u(k)

the cost function of discrete time LQR in finite horizon can be presented as follows:

J = X(N)T QX(N)+
N−1

∑
k=0

(X(k)T QX(k)+u(k)T Ru(k)+2x(k)T Nu(k)) (4.39)

where Q, R are the weight matrices for state and input, the cross term matrix N is in general set to 0.
The feedback control law that minimizes the cost function J is:

u(k) =−K ·X(k) (4.40)

where K is given by:

K = (R+BPT B)T (BT PA+NT ) (4.41)

and P is the unique positive definite solution to the discrete time algebraic Riccati equation (DARE):

P = AT PA− (AT PB+N)(R+BT PB)−1(BT PA+NT )+Q (4.42)

This control law will let output converge to 0 if Re f erence vector is 0. The typical structure of LQR
control system is showed in Fig. 4.4. More details of LQR is discussed in Sec. 6.4.1.

Figure 4.4 – Typical LQR Control System.





Chapter 5

Modelling and Dynamic Analysis of the
Domestic Demand Influence on the Economic
Growth of China

In this chapter, we examines the Granger causality between economic growth, household final con-
sumption (henceforth referred to as “Consumption"), inward foreign direct investment (FDI) and Ex-
port from China using annual data from 1985 to 2014. Cointegration test and vector error correction
model (VECM) are used to identify long-term and short-term relationships. VECM is also used to
find causal links between variables. The result shows there are bidirectional causalities between Con-
sumption, FDI and GDP. Unidirectional causality from FDI to Export, from Export to Consumption
and GDP. The change in the composition of FDI also reveals that as Consumption increases, FDI in
high-tech domain goes up, especially in the high-tech service industry, which can have an effect on
long-run economic growth and change the structure of China’s Export.

Above analysis including data cleaning, system estimation and Granger causality identification
are all carried out with economic methods presented in Sec. 4.1. This chapter is structured as fol-
lows: Sec. 5.1 introduces the interests of performing this analysis, and the focus of recent researches.
Sec. 5.2 shows several data which motivate this study. Sec. 5.3 introduces the data and methodology,
Sec. 5.4 presents the empirical result and discussion, Sec. 5.5 concludes.

5.1 Introduction

Since the implementation of the Open Door Policy in 1978, China has experienced over 40 years eco-
nomic growth and is known as an export-oriented growth model.The huge economic growth attracts
many foreign investments, in 2017, there are 144 billion dollars FDI inflow in China, after USA,
ranked second in the world. Also in 2017, total retail sales in China hit 5781.43 billion dollars, which
is almost even to USA. Considering that China’s population is more than four times that of the United
States, and consumption growth (10.2% in 2017) is also higher than in the United States (4.2% in
2017)6. There is no doubt that China will become the world’s largest market in next years. But there
is limited literature that analyse Consumption’s impact on FDI, Export and GDP. As China’s mid-
dle class has grown, Consumption will play an important role in the transition of China’s economic
structure. This study is not only beneficial to understand the development strategies in China, but also
provides ideas for other developing countries.

6National Bureau of Statistics of China and US Census Bureau
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Previous research on this subject mainly focuses on the causal relationship between FDI, trade
and GDP using time series or panel data, different periods will lead to different conclusions. Liu [87]
finds that there are two-way causalities between Export, FDI and GDP from 1981 to 1997. Tang [129]
examines the interactions between FDI, DI (Domestic Investment), and GDP, and finds only one-way
causality from FDI to GDP using time series from 1978 to 2003. Li [86] indicates that Export is a
long-term and short-term source of GDP growth of west China during the period 1985 to 2008, and
there is bidirectional causality between Export and GDP. At the first stage of the Open Door Policy,
China’s inner market is very small, they have to use FDI to build factories and introduce technologies,
then export low-end products to accumulate wealth. At that moment FDI and Export are the two
most important factors to China’s economy. As the average salary increased from 2711 RMB in 1992
to 74318 RMB in 20177, we can no longer ignore the importance of domestic demand, some recent
studies begin to concern this point. In Eichengreen [38]’s study of the slow down of fast-growing
economies, they conclude that an exceptionally low consumption share of GDP is positively associ-
ated with the probability of a slowdown in growth. Guilhot [58] analyses China’s new development
strategy to overcome the middle-income trap, she summarizes that if China wants to cross the middle-
income trap, it must develop domestic demand and high value-added manufacturing. Lardy [81] lists
several reasons of why China’s leadership wishes to transition to a more consumption-driven growth:
the overinvestment and the excess production slows the growth of factor productivity; extensive pat-
tern of economic development has impeded the growth of personal consumption and generated very
modest gains in employment; burgeoning energy consumption makes detrimental effects on the en-
vironment. Renard [113] indicates that the reason that China changes its commercial structure is
twofold: i) the 2007 financial crisis, 2) the increasing cost of production. The slow-down of the
economic growth of Europe and USA reduces the external demand of China products, therefore it
influences the exportation and importation (e.g., the importation of materials to be used to assem-
ble and export). That forces China to focus more on its internal market. The rebalancing towards
consumption, in particular of services, results in a lower demand for foreign goods. As all the cited
papers above indicate the importance of Consumption in China today, we will show in this chapter
the interaction between GDP, FDI, Consumption and Export with the data including recent years.

5.2 Motivation
In recent years, China has rapidly transitioned from a predominantly lower-middle class society to
a middle, upper-middle and affluent class society over the past decade [10]. Fig. 5.1 shows that we
rank per capita disposable income (henceforth referred to as “PCDI") of nationwide households from
high to low, evenly divided in 5 group (so each group contains 20% households). We can observe that
during 2013-2017, PCDI of households in all the levels are increasing. Obviously, higher groups have
a sharper increasement, but that doesn’t mean there is no improvement in lower group, In Fig. 5.2, we
could see that the differences of growth rate between groups are not enormous, but when we consider
the big gap of bases between groups, higher groups indeed have a bigger absolute augmentation.

As the PCDI increase in all groups, a huge demand is being created for all level of consumptions,
especially the emerging middle, upper-middle class, they will demand more better quality product, the
most obvious field is the automobile. In 2009, China surpassed USA to become the world’s biggest
automobile market. In 2017, it selled 28.8 million cars, of which more than 1.2 million are imported
(BMW, Mercedes, Lexus ranked in the top 3). Also in 2017, Chinese tourists spent 258 billion U.S.
dollars on international tourism, almost one fifth of the world’s total tourism spending [37]. Insurance
policies per capita increased from 1.96 (2010) to 2.89 (2017) [30].

7Ministry of Human Resources and Social Security, China
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Figure 5.1 – Per Capita Disposable Income of Natiaonwide Households by Income Quintile

Figure 5.2 – Growth Rate of Per Capita Disposable Income of Natiaonwide Households by Income
Quintile
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While the consumption booms with income, after reaching the top in 2006, the proportion of
exports to GDP begins to decrease. Due to the cost reasons, the low-end manufacturing is partially
replaced by Southeast Asian countries, and as the high-end manufacturing are controlled by very few
countries in the world, it is almost impossible to convince other countries to share jobs in this area.
But the huge consumer market is an important leverage for China, this is why we can see the factories
of BMW and Mercedez, or even of Airbus and Boeing in China. In the following sections, we will
show the importance of consumption to China’s GDP, and explain how China’s consumption reshape
the country’s economic growth.

5.3 Data and Methodology
Annual Export, Consumption and GDP of China from 1985 to 2014 are obtained from World Bank.
Export consists of goods and services. Annual FDI inflow data for the same period are acquired from
various sources, including IMF (International Monetary Fund) from 1985 to 1989 and UN Comtrade
from 1990 to 2014. All the series are deflated by GDP deflator (2010 = 100), GDP deflator data is
also obtained from World Bank. And all the variables are expressed on logarithm8.

At first, in order to use the Least Squares regressor and to estimate a VAR model, we will test the
stationarity of each variable and their first difference by ADF (Augmented Dickey-Fuller) unit root
test. Then, we will estimate a VAR model with level value to select lag. A VAR (p) model (VAR
model with p lags) can be carried out via the following equations:

yt = c+A1yt−1 + · · ·+Apyt−p + et , t = 0,1,2,...,N (5.1)

where yt = (y1,t ,y2,t ,...,yk,t)
T is a (K×1) vector, K is the dimension of yt . Ai is a (K×K) coefficient

matrix, c = (c1,c2,...,ck)
T is a (K×1) intercept vector and et = (e1,t ,e2,t ,...,ek,t)

T is a k-dimensional
white noise.

Thirdly, the Johansen cointegration test will be used to find the cointegration rank and the coin-
tegration equation. Fourthly, we will estimate the VECM (Vector Error Correction Model) to find
various Granger causal relations, then use it for further weak exogeneity tests. We will also run
other pairwise Granger causality tests (∆LEXPORT, ∆LCONSUMPTION), (∆LEXPORT, ∆LGDP)
and (∆LEXPORT, ∆LFDI) to better explain our model.

VAR need to be implemented with stationary variables, which means there are no trends or shifts
in the mean or in the covariances, but trends are quite common in practice, for example Fig. 5.3. We
can see that there are strong increasing trends for all four variables, so in this situation, we need to
check if all the variables are integrated of order one, if so, we could run Johansen cointegration test to
find the cointegration rank and cointegration equations, then use them to fit a VECM. Supposed that
all the variables are I(1): integrated of order one, and cointegration rank equals to 1, then VECM with
one lag can be written in form:

∆yt =


α11
α21
α31
α41

[β11β12β13β14
]

yt−1 +Γ1∆yt−1 + c+ εt , t = 0,1,2,...,N (5.2)

where ∆ is the first difference operator, yt = (y1,t , ...,yk,t)
T is a (K× 1) vector (in our case, K =

4), ∆yt = (y1,t − y1,t−1,...,yk,t − yk,t−1)
T is a (K×1) vector of first difference of yt , Γ1 is a (K×K)

coefficient matrix, c = (c1,c2,...,ck)
T is a (K × 1) intercept vector and εt = (ε1,t ,ε2,t ,...,εk,t)

T is a
8Logarithm of Export, Consumption, FDI and GDP referred to as LExport, LConsumption, LFDI and LGDP
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Figure 5.3 – Trends of variables

k-dimensional white noise, dimension of βi, j and αi, j is just (1× 1), matrix with all βi, j is called
cointegrating matrix and matrix with all αi, j is referred to as the loading matrix. Note that if cointe-

gration equation has a constant, the part
[
β11β12β13β14

]
yt−1 should become

[
β11β12β13β14β15

][yt−1
1

]
.

Weak exogeneity test [69] will be implemented with the VECM. It is also called restricted VECM
where we put restriction on αi, j and βi, j.

5.4 Empirical result and discussion

5.4.1 Preparation for cointegration test and VECM

Tab. 5.1 gives the result of ADF unit root test. The selection of optimal lag is chosen by downward
search from a pre-chosen lag (here we set to 5) length based on the Akaike information criterion
(AIC). From the result, we cannot reject the null hypothesis for the variables in level, but the values
of their first difference are stationary, so all the variables are integrated of order one.

Since all the variables are integrated of order one, we could fit a VAR and select lag. Notice
that, while we have considered specifying the VAR order p, but our objective is to choose lagged
differences for our VECM model, the criterion of VAR order is also applicable for choosing the
number of lagged differences in a VECM. p−1 lagged differences in a VECM correspond to a VAR
order p. Thus once we know p, we know the number of lagged differences. If some of the variables
are known to be integrated, the VAR order must be at least 1 [91].

We firstly fit a VAR model, then run a VAR lag order selection test with a maximum lag equals
to 3. In Tab. 5.2, column from 3 to 7, each column represents a test of order selection, the result
clearly shows that lag = 2 is the best choice by the criterion in all the methods. Therefore, the lagged
differences in VECM equal to 1.
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Table 5.1 – ADF test for unit root

Null hypotheses: LExport, LGDP, LConsumption and LFDI contain a unit root

Variables ADF Level ADF First Difference

LExport -1.08678(0) -4.95614***(0)
LGDP -0.779635(1) -4.44409***(0)
LConsumption 0.881906(1) -2.83766**(0)
LFDI -2.11473(2) -6.20035***(1)

Notes: (1) ***, ** and * denote significance at the 1%, 5%, and 10% levels, respectively.
(2) Figures in parentheses are the number of lags used.

Table 5.2 – VAR lag order selection criterion

Endogenous variables: LExport, LGDP, LConsumption and LFDI
Exogenous variables: C

Lag LogL LR FPE AIC SC HQ

0 9.181270 NA 8.01e-10 -0.383798 -0.191822 -0.326713
1 164.4898 253.0954 2.69e-10 -10.70295 -9.743069 -10.41753
2 194.5407 40.06793* 1.04e-10* -11.74376* -10.01598* -11.23000*
3 209.4034 15.41312 1.44e-10 -11.65951 -9.163826 -10.91741

* indicates lag order selected by the criterion
LR: sequential modified LR test statistic(each test at 5%)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion

Hq: Hannan-Quinn information criterion

5.4.2 Cointegration test
The Johansen cointegration test is used to find the cointegration rank and cointegration equations
among the variables before causality testing using the VECM model. Tab. 5.3 shows that both Trace
and Maximum eigenvalue test indicate 1 cointegrating equation at the 0.05 level. Four variables for
one cointegrating equation, therefore, one normalization condition and tree exclusion restrictions are
introduced; this study normalizes on LGDP and excludes LExport, LFDI and LConsumption, which
leads the cointegrating equation below:

LGDP = 0.049LConsumption+0.08LFDI +0.81LExport +2.47 (5.3)

The coefficient reveals that Consumption, FDI and Export all have positive impacts on GDP, as Fig-
ure 5.3 reflects that there are common trends of all four variables, the slope of LExport is obviously
steeper than others before 2008 crisis, that’s why it contributes more (coefficient is much bigger than
other two) in LGDP; another trend is also apparent: after 2009, growth of LExport became weaker,
LFDI keeps its trend, only LConsumption follows the speed of growth of LGDP.



45

Table 5.3 – Johansen cointegration test

Series: LExport, LGDP, LConsumption and LFDI
Unrestricted Cointegration Rank Test (Trace)

Hypothesized
No. of CE(s)

Eigen-
value

Trace
Statistic

0.05
Critical
Value

Prob. **

None * 0.841705 80.66832 47.85613 0.0000
At most 1 0.511876 29.05613 29.79707 0.0607
At most 2 0.256716 8.974912 15.49471 0.3677
At most 3 0.023573 0.667953 3.841466 0.4138

Series: LExport, LGDP, LConsumption and LFDI
Unrestricted Cointegration Rank Test (Maximum eigenvalue)

Hypothesized
No. of CE(s)

Eigen-
value

Max-Eigen
Statistic

0.05
Critical
Value

Prob. **

None * 0.841705 51.61219 27.58434 0.0000
At most 1 0.511876 20.08122 21.13162 0.0696
At most 2 0.256716 8.306959 14.26460 0.3483
At most 3 0.023573 0.667953 3.841466 0.4138

* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis(1999) p-values

5.4.3 Weak Exogeneity and Granger Causality of VECM
According to the cointegration equation, the order of lagged difference obtained in the previous test,
a VECM model in form of Eq. (5.2) is implemented, the equation which normalizes ∆LGDP on the
left-hand-side is introduced below:

∆(LGDP) =C(1)∗ (LGDP(−1)−0.049∗LConsumption(−1)
−0.08∗LFDI(−1)−0.81∗LExport(−1)
−2.47)+C(2)∗∆(LGDP(−1))
+C(3)∗∆(LConsumption(−1))+C(4)∗∆(LFDI(−1))
+C(5)∗∆(LExport(−1))+C(6)

(5.4)

and Tab. 5.4 gives the values of all coefficients and probabilities of T-test. The column of Probability
shows that except C(5), all the coefficients are statistically significant. The most important coefficient
is C(1), it must be statistically significant and negative, otherwise our Eq. (5.4) will not converge to
long-term relation.

To conduct weak exogeneity test, we need to successively set each row of cointegrating matrix(αi, j
in Eq. (5.2)) to zero as a restriction before we implement VECM model. Tab. 5.5 presents the weak
exogeneity test result, the test for ∆LGDP ∆LFDI and ∆LConsumption massively reject the null
hypothesis, but ∆LExport cannot reject that it is weakly exogenous to system. According to Fig. 5.3,
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Table 5.4 – T-test of coefficient in VECM model

Method: Least Squares (Gauss-Newton / Marquardt steps)

Null hypothesis: C(x) equals to 0

Coefficient Value Std. Error t-Statistic Prob.

C(1) -0.319553 0.039229 -8.145882 0.0000
C(2) -0.990592 0.320478 -3.090988 0.0053
C(3) 0.579396 0.230062 -2.518436 0.0196
C(4) -0.125740 0.026865 -4.680368 0.0001
C(5) -0.002919 0.057463 -0.050793 0.9599
C(6) 0.118864 0.015039 7.903478 0.0000

we can see that there is a big chute of LExport in 2009, but the LGDP and LConsumption are not
influenced, although there is a small vibration for LFDI too, it’s not as strong as LExport. This result,
therefore, implies that there is bi-directional Granger causality between GDP, FDI and Consumption,
but not Export. This conclusion is reinforced by Granger causality test result in Tab. 5.6. Wald test
result reveals that there is bi-directional causality between GDP, FDI and Consumption, but there is
only one-way causality from FDI to Export. Liu [87] and Wong [133] have all mentioned that there
is bi-directional causality between GDP and Export of China using annual time-series data over the
period from 1978 to 2002. After including recent annual data until 2014, this relation disappeared.
However if we run 3 other pairwise Granger Causality test, Tab. 5.7 reflects that Export Granger
causes GDP and Consumption at the 5% and 10% level respectively, but not FDI. Therefore, the
Export does not jointly cause GDP and Consumption with other variables, but it causes GDP and
Consumption pairwisely.

Table 5.5 – Weak exogeneity test

Weak exogeneity test on restricted αβ T : X2(1) LR test p-value

∆LGDP weakly exogenous to system 28.31301 0.000000
∆LFDI weakly exogenous to system 7.859995 0.005054
∆LConsumption weakly exogenous to system 16.10339 0.000060
∆LExport weakly exogenous to system 2.456090 0.117070

5.4.4 Further discussion
China has long been considered a model for an export-oriented economy, and because of tariffs and
subsidies, it has led to today’s trade disputes with other countries, but our results show that there is no
longer two-way causality between Export and GDP. After peaking in 2006, the proportion of exports
to gdp has been decreasing 9. Since 2009, the contribution of Export to GDP growth is negative except
2012 and 201410.

9World Bank national accounts data, and OECD National Accounts data files
10NBS, Statistical Yearbook, 2016
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Table 5.6 – VECM Granger Causality test

Wald test statistics

Dependent
variables

∆LGDP ∆LFDI ∆LConsumption ∆LExport Causality inference

∆LGDP 21.90584*** 6.342517*** 0.002580
FDI⇒GDP
Consumption⇒GDP

∆LFDI 9.148019*** 8.946369*** 0.121575
GDP⇒FDI
Consumption⇒FDI

∆LConsumption 7.149010*** 6.155757*** 0.003784 GDP⇒Consumption
FDI⇒Consumption

∆LExport 0.000503 6.675678*** 1.169216 FDI⇒Export

Bi-directional
Causality

FDI⇔GDP
Consumption⇔GDP
Consumption⇔FDI

Notes: (1) ***, ** and * denote significance at the 1%, 5%, and 10% levels, respectively.
(2) Null hypothesis: In one row, dependent variable does not caused by other column variables.

Table 5.7 – Pairwise Granger Causality test

Null Hypothesis F-Statistic Prob.

∆LGDP does not Granger Cause ∆LExport 0.61579 0.4400
∆LExport does not Granger Cause ∆LGDP 4.96100 0.0352

∆LConsumption does not Granger Cause
∆LExport

1.26041 0.2722

∆LExport does not Granger Cause
∆LConsumption

4.12415 0.0530

∆LFDI does not Granger Cause ∆LExport 1.37615 0.2518
∆LExport does not Granger Cause ∆LFDI 0.00713 0.9334

FDI still shows bi-directional causality with GDP, but this relation needs to be explored. Due to
China’s regulation of FDI in the financial industry, foreign investors were not allowed to hold more
than 50% of the shares of Chinese securities companies, fund management and futures companies, so
most of the FDI flowed into manufacturing, until 2015, 49.97% of total accumulated FDI has been
used in manufacturing [96], the technology spillover brought by foreign invested companies is a key
factor in long-run economic growth [115], FDI can be seen as a proxy of this factor. We also noticed
that there is only unidirectional causality from FDI to Export, that implies Export is no longer able
to stimulate FDI, China’s low-end manufacturing has been taken over by southeast Asian countries,
the structure of China’s economy is changing. In 2011, it’s the first time that FDI inflow in service
industry is higher than manufacturing, and in 2015, 67.61% of FDI is used in service industry, but the
export of service is at its beginning (15.4% of total export, comparing to 32.1% of US in 2015), we
can imagine, service industry will become more and more important in China’s export.
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The Consumption has two-way causality with GDP and FDI, and only one-way causality from
Export to Consumption. Due to the tariffs, the price of goods imported into China is more expensive
and less competitive, but no one wants to lose the market of 1.4 billion people. Then the companies
choose to fabricate locally, that attracts more FDI putting into high-end manufacturing domain, which
will also make technology spillover effect and result in long-term economic growth. Renard [113]’s
study also indicates that China is enduring a rising deficit in service, mostly caused by transport
and tourism, and IMF predicts that this deficit will aggravate in the following years. This trend can
also attract FDI to invest into high-end service area. Moreover, the household final consumption
expenditure which represents 40% of GDP in China is still much less than the average level (60%) of
the OECD countries. Consumption will thus play an important role in the China’s GDP growth in the
next years.

5.5 Conclusion and Perspective
This study reveals the trend of China’s economic transition. Many studies on the early stage of Open
Door Policy have shown that there are two-way relations between Export, FDI and GDP. At that time,
FDI mainly invested in low-end labor-intensive manufacturing, which helped China solve the poverty
problem and completed China’s early industrialization. At the moment, China’s domestic market is
still very small, and the main consumption is basic necessities. But as workers’ wages increase, our
result shows that Chinese consumers change not only the China’s industrial structure but also the
structure of FDI and path of growth of China’s economy. The emerging middle class is no longer
content to buy basic necessities, they need cars, travels, health care and financial products. The huge
consumer market and the tariff faced by imports to China attracts and forces foreign companies to
produce high-end products and provide high quality services in China, which directly changed the
structure of FDI. Although the pairwise causality test shows Export still has one-way causality to
GDP, its impact is not strong enough to show up in multivariable VECM causality test. Because of
the environmental pressure, China is gradually stripping the highly polluting heavy industry, we can
also sense this change through the structure of FDI, the proportion of investment in the service indus-
try has increased year by year, especially in the high-tech service industry. Although the proportion
of investment in manufacturing industry is continuously declining, the proportion of high-end man-
ufacturing in total manufacturing investment continues to increase [96]. We can say that China has
accumulated wealth with an export-oriented economy, and now, China is using its domestic market to
adjust its economic structure.

In the future, we are more optimistic about China’s domestic market than exports. After all,
China’s consumption still accounts for a smaller proportion of GDP than the average in OECD coun-
tries. FDI and Consumption will continue to support GDP, but with the development of the economy,
China will be hard to take advantage of the status of a developing country on the issue of tariffs, once
involved into a trade war, exports may be more difficult.

After implementing this study, one factor which holds us back to broaden the work is the limitation
of China’s data. To align all the time series, we could only collect the data from 1985, and the data is
yearly instead of quarterly. For the interesting time series such as investment and public expenditure,
we would also want to include them into the model to enrich the study, but these data from China
are not available. Due to the above reason, in next chapter, we will continue the study switching to
macroeconomic data of France.



Chapter 6

Modelling and Optimal Control of MIMO
System - France Macroeconomic Model Case

In this chapter, we will introduce an optimal control on a Multiple-Input and Multiple-Output (MIMO)
macroeconomic system. With french macroeconomic quarterly data from 1980Q1 to 2018Q4, MIMO
linear autoregression models will be estimated and transferred to a state-space model, we implement
the optimal control: Linear–Quadratic Regulator (LQR) on the estimated model to lead it reach the
desired growth equilibrium. The results show that the control system can reach to the desired steady
state, and by properly setting the parameters of LQR we can adjust the converging speed. If we
impose constraints on one of the input signals, compensation effect shows on all other inputs and the
result is therefore slightly worse than the case when there are no constraints. Perturbations on outputs
are also studied, results show that our system can quickly recover from the disturbance.

6.1 Introduction
Control theory has a long history of implementation into economic domain. [28] summarizes the
development of stochastic control theory in macroeconomic policy analysis into three periods. The
first is pre-1970 when the major ideas of policy analysis and of optimization were formed [32]. The
second is the early and middle 1970s when formal stochastic control theory was rapidly developed
for and applied to the study of macroeconomic policy [27, 45]. The third period, beginning in the late
1970s, was stimulated by the introduction of the idea of rational expectations in economic analysis
[18].

Recent works focus more on applications [62] proposes a general class of PID-based monetary
policy rules, the feedback rules let model use control signal (e.g. central bank’s policy interest rate)
responds to movements in a small number of macroeconomic factors, such as the current amount of
labor market slack and the deviation of the rate of inflation from its target. Under an optimal control
monetary policy [20], the current and expected future path of the policy is instead typically calculated
with a procedure that minimizes a cost function subject to certain constraints. For fiscal policy [90]
and resource allocation [29, 66] problems, they follow the same ideas of optimal control, differences
are the cost function and the constraints. To estimate the asset holdings of a portfolio, [47] uses
algorithms applied to nonlinear dynamic systems to estimate the state with a discrete-time observer.

In this chapter, we will follow the optimal control idea mentioned in chapter. 4, we will apply it on
the french macroeconomic model. Our objective is to maintain a constant economy growth rate (out-
put) according to the available resources (input). We will first modelize this system as Multiple-Input
and Multiple-Output (MIMO) system. After data pre-processing to make the time series stationary,
the orders and parameters of MIMO system are estimated and validated before transforming it into a
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state space model. The model we estimate in this chapter is autoregressive model with external inputs.
The outputs of model are: GDP (Gross Domestic Production), EXP (Exportation), IMP (Importation).
The inputs of model are: HC (Household Consumption), GFCF (Gross Fixed Capital Formation) and
PE (public expenditure). To satisfy our objective, an optimal control solution: Linear–Quadratic
regulator (LQR) is designed and implemented. By adjusting parameters of LQR, we can control the
converging speed of output to steady state. A further simulation result shows that if we put constraints
on the level of one of input signals, we can observe the compensation effect from other inputs, but
even there is no limitation on the amplitude of inputs variables, the level of output and its converging
speed to steady state is still slightly worse than the case without constraints. Perturbations on outputs
are also studied, which simulate a scenario of economic crisis. The experiments are also developed
with and without constraints on input signals. Results show that our system can quickly recover from
the disturbance, and constraints on input signals delay the recovery.

6.2 System Identification
In this section, the process of estimating the economic model is given. After the data preparation to
make original data stationary, model order is estimated for a MIMO model. The parameters of model
are then estimated and validated.

6.2.1 Preparation of data
All the data are obtained from INSEE (Institut National de la Statistique et des Études Économiques).
After discussions with experts on the issue, we decide to study 6 time series: GDP (Gross Domestic
Production), EXP (Exportation), IMP (Importation), HC (Household Consumption), GFCF (Gross
Fixed Capital Formation) and PE (public expenditure). All the data are quarterly, ranged from 1980Q1
to 2018Q411. Original data are presented on the values of current price12, we deflate it by France GDP
deflator (base year: 2014) obtained from World Bank, deflated time series are showed in Fig. 6.1.

Figure 6.1 – Original data (Billion Euro).

In economic, when we deal with original time series, we prefer to use natural logarithm to better
linearize them [46]. As we will use these time series to do linear regression, all the series must be
stationary. ADF (Augmented Dickey–Fuller) test [25] is commonly used unit root test to examine

11Where Q1, Q4 denote first and fourth quarter of the year
12Current Prices measures GDP/ inflation/asset prices using the actual prices we notice in the economy. Current prices

make no adjustment for inflation.
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Table 6.1 – ADF test for unit root

Variables ADF Level ADF First Difference

LGDP -1.10548(1) -7.66072(0)***
LEXP -3.28665(2) -6.29252(3)***
LIMP -2.87331(4) -6.20372(3)***
LHC -1.45805(3) -5.59492(2)***
LGFCF -3.60257(2) -4.01801(1)***
LPE -1.92627(1) -5.69958(1)***

Null hypotheses: Variable contains an unit root
Notes: (1) ***, ** and * denote significance at the 1%, 5%, and 10% levels, respectively.

(2) Figures in parentheses are the number of lags (delays) used.

the stationarity of time series. We implement the natural logarithm of our original time series and
their first difference. Results are showed in Tab. 6.1. LGDP, LEXP, LIMP, LHC, LGFCF and LPE
denote the natural logarithm of GDP, EXP, IMP, HC, GFCF and PE. From the table we can observe
that test for natural logarithm of original data cannot reject the null hypothesis that variable contains
an unit root so the original time series are not stationary. But the test result for the first difference of
natural logarithm of all the series all reject the null hypothesis at 99% (i.e., the ∗ ∗ ∗ following the
values as indicator), so they are stationary. We will only use the first difference of natural logarithm
of GDP, EXP, IMP, HC, GFCF and PE in later analysis (hereinafter referred to as DLGDP, DLEXP,
DLIMP, DLHC, DLGFCF and DLPE). In order to clearly define our economic model, we first define
two vectors as follows:

y =

y1
y2
y3

=

DLGDP
DLEXP
DLIMP

 u =

u1
u2
u3

=

 DLHC
DLGFCF

DLPE

 (6.1)

where y is the output (endogenous variables) of our model, u is the input (exogenous variables) of our
model. The selections of y and u are according to their economic attributes. Exogenous variables are
the factors we could manipulate in economic system (e.g., increasing public expenditure). Endoge-
nous variables are the consequences of the economic system which we could only observe but not
directly interfere.

6.2.2 Selection of model order
Consider now a m-input-p-output system represented by a canonical input-output representation [57,
34], for i = 1,2, ... p:

yi(k) =
p

∑
j=1

ni j

∑
q=1

ai jqy j(k+q−ni−1)

+
m

∑
j=1

ni

∑
q=1

bi jqu j(k+q−n j−1)+ ei(k) (6.2)

where yi(k) denotes the value of output yi at time point k, ai jq and bi jq are the coefficients of yi(k+
q+ ni− 1) and ui(k+ q− n j− 1), p and m are the numbers of outputs and inputs, ei(k) is the white
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noise at time point k, ni are the observability indices and ni j are given by:

ni j = min{ni,n j}, if i≤ j (6.3)

and

ni j = min{ni +1,n j}, if i > j (6.4)

We apply this method for each output by using the technique of "instrumental variables" in [80], and
implementing a criterion which penalizes the model complexity (ses [80, 35]). Fig. 6.2 shows the
order selection process for y1, y2 and y3. Criteria calculates the sum of estimation errors, as order
increases, criteria decreases to 0. One of the objectives of system identification is to estimate models
of reduced order, so [80] adds a term that penalizes the model complexity. [80] also provides Matlab
scripts to implement these estimations.

(a) Result of y1 (DLGDP) (b) Result of y2 (DLEXP)

(c) Result of y3 (DLIMP)

Figure 6.2 – Order Selection

As it can be seen from Fig. 6.2, the estimated model order for equation of y1, y2, y3 are 5, 4, 5.
One should notice that these estimated order are not definitive, we still need to pass the validation
process to decide the order.

6.2.3 Estimation and Validation of parameters
After finding the model order, Least Squares method is used to estimate the parameters of the 3
equations for y1, y2 and y3. After each estimation, a whiteness test (autocorrelation test) will be
applied to make sure the residuals from the estimated equation are white noise, which means the
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estimated model have already extracted all the knowledge from training data. To determine whether
a time series is white noise, this problem is well studied in both economic [5] and automatic [80]
domain. The algorithms of calculation vary a little bit through these studies, but the goal remains
the same: testing if values are mutually uncorrelated. In this paper, we choose to use the default
implementation of autocorrelation test function in Gretl [8]. Fig. 6.3 shows the final autocorrelation
test for estimation residuals of y1, y2 and y3. It states that if all the autocorrelation values should be in
the range of limit ±1.96

T 0.5 where T is the total number of data point in the dataset. In our case, we have
156 data points (From 1980Q1 to 2018Q4), so the limit is ±0.157 here.

(a) y1 Residuals

(b) y2 Residuals

(c) y3 Residuals

Figure 6.3 – Autocorrelation Test for Estimation Residuals

Once we find a valid model, we should continue to reduce the unimportant regressor (i.e. variable)
whose coefficient is much smaller than others (comparison using the absolute value). Our objective
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is to find the minimal model, which means a model with lowest order, least variables, but still valid.
Every time we delete one regressor, we will re-estimate the parameters, re-do the whiteness test on
residuals, in order to make sure the new model is still valid. We continue to do that until none of the
regressor can be removed from the equation. We finally find the minimal model as follows:

y1(k) = a115y1(k−1)+a114y1(k−2)
+a113y1(k−3)+a112y1(k−4)+a111y1(k−5)
+a124y2(k−2)+a123y2(k−3)+a122y2(k−4)
+a135y3(k−1)+a134y3(k−2)+a133y3(k−3)
+b111u1(k−1)+b131u3(k−1)+ e1(k) (6.5)

y2(k) = a214y1(k−1)+a221y2(k−4)
+a222y2(k−3)+a223y2(k−2)+a224y2(k−1)
+a234y3(k−1)+b211u1(k−1)+b221u2(k−1)
+ e2(k) (6.6)

y3(k) = a314y1(k−1)+a313y1(k−2)
+a324y2(k−1)+a323y2(k−2)+a334y3(k−1)
+a333y3(k−2)+a332y3(k−3)+a331y3(k−4)
+b321u2(k−1)+ e3(k) (6.7)

The final orders of reduced model are 5,4,4 for y1, y2 and y3. Concrete parameter values will be given
in Sec. 6.2.4.

6.2.4 Transfer to Discrete-time Linear State-Space Model
We first define our state vector X according to Eq. (6.5) (6.6) and (6.7).

X(k) = [y1(k−1) y1(k−2) y1(k−3) y1(k−4) y1(k−5)
y2(k−1) y2(k−2) y2(k−3) y2(k−4)

y3(k−1) y3(k−2) y3(k−3) y3(k−4)]T (6.8)

Eq. (6.5) (6.6) (6.7) are written as a discrete-time state-space model in the following form:

X(k+1) = A ·X(k)+B ·u(k)
Y(k) =C ·X(k)+D ·u(k) (6.9)

where discrete time point k ∈ Z+, A ∈ R13×13; B ∈ R13×3; C ∈ R1×13; D ∈ R1×3. The values of
A,B,C,D are showed in (6.10).

Eigenvalues of matrix A are checked, all its eigenvalues are within unit circle, which means the
open-loop model is stable. Controllability and observability of the system are also tested, using the
expressions of controllability and observability matrices showed in (4.37) and (4.38). If the rank of
observability and controllability are equal to the number of states, we call the system controllable
and observable, which is the case for our model.
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A =



0.397 0.06 −0.126 0.193 0.066 0.037 0.05 0 0 0 0 −0.29 −0.038
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

0.264 0.072 −1.055 0.958 0 0.225 0.331 0.008 −0.223 0.208 −0.185 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

−1.0538 0.97 −0.6 0 0 0.356 0.399 0 0 0.05 −0.315 0.035 −0.218
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0



B =



0.177 0 0.118
0 0 0
0 0 0
0 0 0
0 0 0

0.342 0 0.364
0 0 0
0 0 0
0 0 0
0 0.869 0.765
0 0 0
0 0 0
0 0 0



C =
[
1 0 0 0 0 1 0 0 0 1 0 0 0

]
D =

[
0 0 0

]

(6.10)

6.3 Optimal Control Laws
The theory of optimal control is concerned with operating a dynamic system at minimum cost, one
way of doing it is by using Linear–Quadratic Regulator (LQR). The introduction of LQR is already
provided in Sec. 4.2.2, we will not repeat here again. In this section, we design our own reference
signal for the system, and according to the character of our desired output, we develop our own system
with modified LQR.

6.3.1 Reference Input
As we will focus on controlling GDP, then we need to implement our designed reference to let output
reach the desirable value. Recall that y1 in 6.1 is the first difference of natural logarithm of GDP,
illustrated in Eq. (6.11).

y1(k) = ln(GDP(k))− ln(GDP(k-1)) = ln(
GDP(k)

GDP(k-1)
) (6.11)

If we want our GDP to have constant p percent of increasing after each time point (i.e. GDP(k)
GDP(k-1) =

1+ p
100 ), then the quarterly GDP increasing ratio p can be interpreted as in (6.12):

p = (ey1(k)−1)×100 (6.12)
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where e is the base of the natural logarithm. As we want a constant increasing ratio, we know that to
keep p constant, y1 needs to remain constant too.

6.3.2 Control system
Imagine when our system reaches steady state, our state and input vectors will also remain stable. We
can define these optimal steady state tuple as (Xr , ur) and desired output is defined as Yr. When our
system reaches steady state, Xr, Yr and ur satisfy following relations according to Eq. (6.9):

Xr(k) = A ·Xr(k)+B ·ur(k)
Yr(k) =C ·Xr(k)+D ·ur(k) (6.13)

We see from Fig. 4.4 that, different from general control method (e.g. PID), the Re f erence in
LQR does not directly apply feedback on output, but react on feedback control law −K ·X . If there
is no Re f erence, the steady state of output will be 0. To let the difference between X(k) and Xr(k)
minimize to 0, we make a change on Eq. (6.9).

X(k)−Xr(k) = A ·X(k)+B ·u(k)−Xr(k)
= A ·X(k)+B ·u(k)−A ·Xr(k)−B ·ur(k)
= A · (X(k)−Xr(k))+B · (u(k)−ur(k)) (6.14)

if we define ∆X(k) = X(k)−Xr(k) and ∆u(k) = u(k)−ur(k), then we have a new linear system:

∆X(k) = A · (∆X(k))+B · (∆u(k)) (6.15)

re-write the cost function of LQR (4.39) as:

Jr =
N−1

∑
k=0

((∆X(k))T Q(∆X(k))+(∆u(k))T R(∆u(k))

+2(∆X(k))T N(∆u(k)))+(∆X(N))T Q(∆X(N)) (6.16)

feedback control law that minimizes the Jr can be written as:

∆u(k) =−K ·∆X(k) (6.17)

and K = (R+BPT B)T (BT PA+NT ) is independent from state and input vectors, so the K in (4.40)
and (6.17) does not change. The control law (6.17) can also be written as:

u(k) =−K · (X(k)−Xr(k))+ur(k) (6.18)

According to Eq. (6.18), the newly designed LQR control system is showed in Fig. 6.4. As we can not
directly apply designed output into the feedback, we will need a pre-processing function to transfer
the desired output Yr to the desired state vector Xr and input vector ur when the system reaches the
steady state. One thing to notice that there will not be only one pair of Xr and ur to satisfy the pre-
processing function condition, it will be a range for both value, we will let experts to choose the values
which make more sense in real world.

Recall the cost function of LQR: J =X(k)T QX(k)+∑
N−1
k=0 (X(k)T QX(k)+u(k)T Ru(k)+2X(k)T Nu(k)).

We first set N to 0. And in many cases, it is not the states X which are to be minimized, but the output
variable Y . In this case, we set the weight matrix Q = CT Q′C, since Y (k) =C ·X(k), and the auxiliary
matrix Q′ weights the plant output [132].

When R >> CT Q′C, the cost function is dominated by the control effort u, and so the controller
minimizes the control action itself, this control strategy is used when the control signal is constrained.
When R <<CT Q′C, the cost function is dominated by the output Y , and there is less penalty for using
large u.
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Figure 6.4 – LQR Control system.

6.4 Control Laws Evaluation

6.4.1 Experiment Setting
Reference Signals Setting According to the reality, a yearly GDP growth ratio of 3.2% is inter-
esting to study13. To reach this level, the quarterly GDP increasing ratio p is around 0.8% (i.e.
(1.008)4 ≈ 1.032). From (6.12) we know,

y1r = ln(1+
p

100
) = ln(1.008) = 0.007968≈ 0.008

so y1r = 0.008, in the same calculation process, we set y2r = 0.0175 and y3r = 0.0086, and y1r, y1r
and y1r compose the vector Yr.

Recall the relations between Yr, Xr and ur in (6.13), in our experiment, since the output is identical
to the first entry of the state vector, the matrix D will be 0 in our case. These equations can be
re-written as:

Xr(k) = (I−A)−1 ·B ·ur(k)
Yr(k) =C ·Xr(k) (6.19)

where I is the identity matrix. As we explained in the end of Sec. 6.3.2, there is not only one pair of
Xr and ur that satisfy (6.19). After our selection, one reasonable pair of Xr and ur is:

Xr(k) = [0.008,0.008,0.008,0.008,0.008,0.0173,0.0173,

0.0173,0.0173,0.0086,0.0086,0.0086,0.0086]T

ur(k) = [0.024,0.003,0.003]T

13Actually, the recent 10 years (2010-2019) average GDP growth ratio of France is 1.38%, but if we look back 25 years
ago, the highest GDP growth ratio are showing during 1998-2001, which the average ratio is around 3.2%. Therefore we
want to study what measurements should be implemented to sustain this growth ratio.
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LQR Parameters Setting Knowing about the constraint of u, diagonal weights [100] of Q and R
are used.

Q =

q1
. . .

qnq

R = ρ

r1
. . .

rnr

 (6.20)

where nq = rank(A) = 13, nr = rank(B) = 3. For the sake of simplicity, we will let qi = 1 for all
i ∈ [1,13], and r j = 1 for all j ∈ [1,3], we will use ρ to adjust the input/state balance. We choose three
ρ (ρ ∈ [1,10,100]) to implement the experiments to compare the converging speech and observe the
input signal range.

6.4.2 Experimental Evaluation
We implement the system of Fig. 6.4 in Simulink. The initial state vector of state-space model is set
by the real french data from 1980Q1 to 1981Q1.

X0 = [0.001,0.012,−0.008,−0.004,−0.004,0.036,

0.032,0.013,−0.03,0.007,0.017,0.006,−0.002]T

6.4.2.1 Variation of ρ without Constraints on Input Signals

Our simulation goes through 50 time point (i.e. quarters). By setting ρ to 1, 10 and 100, the traces
of output (i.e. y1) is illustrated in Fig. 6.5. A more detailed result is showed in Tab. 6.2. For current
experiment, we ignore the result of "1 with constraint" for now. From the results, we can conclude
that when ρ is smaller, we can converge faster to steady state. From Fig. 6.5, we can see a trough at
4th quarter for all curves, the lower this trough, the lower the GDP increasing ratio in this quarter.

Table 6.2 – Summary of Output

ρ time to steady state (unit in quarter) output range

1 18 (0.001, 0.008)
10 32 (-0.001, 0.008)
100 37 (-0.002, 0.008)
1 with constraint 20 (0.001, 0.008)

But the benefits of ρ = 1 comes with cost. Fig. 6.7, 6.8 and 6.9 shows the input signals evolution
during the control. One thing to note is that the curves of ρ = 1, 1 with perturbation and 1 with
perturbation and constraint are overlapped during the quarter from 0 to 25. And the curves of ρ = 1,
10, 100 and 1 with constraint are overlapped during the quarter from 25 to 50. The signal ranges are
showed in Tab. 6.3. From the figures and table, we can see that when ρ = 1, the input signal ranges
are much larger than other two comparisons, and the maximum values are also always higher.
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Figure 6.5 – Output y1 under different ρ values.

Figure 6.6 – Output y1 under different ρ values.

6.4.2.2 Constraints on Input Signals

In our first experiments, we do not impose constraints on input signals, but in reality, there are some
levels that input signals cannot reach. Therefore in this experiment, we fix ρ = 1 and set a maximum
limit 0.03 on signal u1: u1 ≤ 0.3 (assuming we know the upper range of signal u1 under ρ = 1 without
constraint experiment is higher than 0.03). Input signals results of "ρ = 1 with constraint on u1" are
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showed in Fig. 6.7, 6.8 and 6.9 and Tab. 6.3. Comparing to only ρ = 1 result, we can see for signal
u1, the minimum value of the range is still 0.009, but the maximum value of the range becomes 0.03
(which is the limit) instead of 0.038. For u2 and u3, the maximum value of new curves becomes
higher, being used to compensate the insufficiency of u1.

From Fig. 6.5, 6.7, 6.8 and 6.9, we can observe that even u2 and u3 react to compensate limitation
of u1, at 1st and 4th quarter, new results are slightly lower than the result without constraint. As for the
converging speed, from Tab. 6.2, we can also notice that experiment with constraint converges slower
than the experiment without constraint. But still better than the results of ρ = 10 or 100.

6.4.2.3 Perturbation on Output Signals

In this experiment, we still keep ρ = 1, and we add perturbation on output signals to simulate eco-
nomic crisis, to see how the system will react. From the reference signals setting in Sec. 6.4.1, we
know that when the system is stable, y1, y2, y3 should equal to 0.008, 0.0173 and 0.0086. And u1,
u2, u3 should equal 0.024, 0.003 and 0.003. From Fig. 6.6, 6.7, 6.8 and 6.9, we can see that at 24th
quarter, the system has converged to a stable state. Then we add a negative perturbation pulse
signal -0.16 on y1, y2 and y3 at 25th quarter. The ρ = 1 with perturbation and constraint on ui
curves are the scenario where we not only implement the perturbation, but also implement constraints
on all the input signals, for u1 limited between 0 and 0.03, u2, u3 are limited between 0 and 0.008:
u1 ∈ [0, 0.3], u2 ≤ [0, 0.008], u3 ≤ [0, 0.008]. ρ = 1 with perturbation experiment implements the
perturbation, but has no constraints on input signals.

Fig. 6.6 shows that after about 20 quarters after 25th quarter, the two systems totally recover
from the perturbation, apparently the curve without constraint recover faster than the other. From
Fig. 6.7 6.8 and 6.9, we can observe that the amplitude of all inputs for the experiment of ρ = 1 with
perturbation are higher than ρ = 1 with perturbation and constraint on ui. The input signal ranges
showed in Tab. 6.3 also confirm that. One interesting point in Fig. 6.8 and 6.9 reveal that if we do
not impose constraint on input signals, inputs u2 and u3 can be negative, recall that u2 represents
first different of logarithm of Gross Fixed Capital Formation (also called investment). A negative
signal means instead of investing during the crisis, we should sell our assets. As u3 represents first
different of logarithm of Public Expenditure, negative means we need to reduce government spending.
Nevertheless, all these conclusions, although correct from the engineering point of view, need to be
coordinated with expert’s advice.
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Figure 6.7 – Trace of u1 (DLHC) under different ρ values.

Table 6.3 – Summary of Input

ρ input signal input signal range

1 u1 (0.0163, 0.0375)
10 u1 (0.0218, 0.0274)
100 u1 (0.0237, 0.0245)
1 with constraint u1 (0.0163, 0.03)
1 with perturbation u1 (0.0146, 0.0375)
1 with perturbation and constraint u1 (0.0153, 0.03)

1 u2 (-0.0095, 0.003)
10 u2 (-0.0047, 0.0034)
100 u2 (0.0017, 0.0032)
1 with constraint u2 (-0.0095, 0.0031)
1 with perturbation u2 (-0.0095, 0.0087)
1 with perturbation and constraint u2 (0.0, 0.0085)

1 u3 (-0.0196, 0.0068)
10 u3 (-0.0065, 0.0051)
100 u3 (0.0014, 0.0034)
1 with constraint u3 (-0.0196, 0.008)
1 with perturbation u3 (-0.0196, 0.0103)
1 with perturbation and constraint u3 (0.0, 0.0099)
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Figure 6.8 – Trace of u2 (DLGFCF) under different ρ values.

6.5 Conclusion

Applying control theory in economic problem has been successfully studied in many cases, resource
allocation is one of the well established problems in this area, it demands to dynamically choose
available resources with constraints over time to maximize or minimize an objective function.

In this chapter, to apply the above theory, French macroeconomic quarterly data from 1980Q1 to
2018Q4 are used, it consists of 6 variables: GDP (Gross Domestic Production), EXP (Exportation),
IMP (Importation), HC (Household Consumption), GFCF (Gross Fixed Captial Formation) and PE
(public expenditure). Three canonical input-output models are estimated, which first difference of
natural logarithm of GDP, EXP and IMP are endogenous variables (outputs), and first difference of
natural logarithm of HC, GFCF and PE are exogenous variables (inputs). We first estimate the order of
each equation, then the parameters. Once the residuals of models pass the whiteness test, we transfer
the models to a state space model.

After estimating the model, optimal control solution: (Linear–Quadratic regulator) LQR is de-
signed for our problem which is to maintain a constant GDP increasing ratio at certain level. The
algorithm is developed on Simulink. The experiments with or without constraints on input signals are
both implemented: 1) The results without constraints on input signals show that, a lower parameter ρ

in LQR will lead to a faster convergence to steady state; 2) For experiment with constraints on inputs,
furthermore, we impose a limitation on the maximum value that first difference of natural logarithm
of HC can reach. The result shows that when one input cannot reach the level it used to reach, other
inputs will compensate this absence. This action will force other input signals to reach a even higher
level, and the final result of output is still slightly worse than the experiment without constraint as we
expected.

Perturbations on outputs are also studied, the experiments are also developed with and without
constraints on input signals. Results show that our system can quickly recover from the disturbance.
And constraints on input signals can delay the recovery.
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Figure 6.9 – Trace of u3 (DLPE) under different ρ values.

The control structure designed in this chapter has a good applicability and extensibility in eco-
nomic. This work can be further extended with more variables, the constraints are also not limited to
only the range of input signals, it can impose the constraints on inputs and outputs subject to a specific
model of the dynamics of the macroeconomy.





Chapter 7

Conclusions on Economic Model Control

In this part, two studies are performed, one is based on China’s macroeconomic data, another is based
on the macroeconomic data of France.

The first study is carried out only with economic methods, it first use ADF test to find the order
of integration of all time series, then use different criterion (e.g. AIC) to estimate the order of VAR
model. It performed the Johansen cointegration test to find the long-term relation between the time
series, and finally estimated the VECM model and showed the pairwise and multivariable Granger
Causlity results. The main contribution of this study is on the conclusion it draws. Many studies
which based on the China data before 1980s or 1990s, all show that there are clear two-way Granger
Causality between GDP and exportation. As we extend the time series with recent years data, and
include new variables in the study. Our results show that even exportation is still a big part of China
GDP, the two-way Granger Causality does not exist any more, but domestic consumption clearly
shows the two-way Granger Causality with GDP. Consumption will thus play an important role in the
China’s GDP growth in the next years.

The second study comprises the system identification part and optimal control part. Even we
changed the data used in this study, the system identification step is similar as in first study, but
we introduced a new technique to estimate the model order, and we also added a step of model
validation during system identification. To perform the optimal control, LQR is chosen and designed.
Except regular experiements, we also included constraints on inputs, perturbations on outputs. Results
show that our system can always converge to the desired level, it can also quickly recover from the
disturbance. And constraints on input signals can delay the recovery.

From the above studies, we can see that there is no doubt that we can implement the control
on economic models. And our experiments can have very good political implications. For instance
in our second study, we introduce a perturbation on outputs (GDP, Importation and Exportation), it
simulates a sudden crisis, and we can observe and control the inputs to make the outputs re-converge
to its stable state. During this Covid-19 period, which makes this experiment even more meaningful.
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Part III

Control Theory for On-line Training of
Neural Networks

67





69

When we implement system identification, we observe that all the methods are model-driven
approaches, which means that we need to pre-define the structure of the economic model before
estimating the parameters. Data-Driven is a new way of thinking, enabled by machine learning. The
main idea is to find an algorithm that can spot connections and correlations that you may not even
suspect. Deep neural networks (DNNs) is part of a broader family of machine learning methods, we
will address the training process of DNNs in this part.

This part tackles the issue of dynamically adapting learning rate in order to train a neural network.
Learning rate is a hyperparameter that controls how much to change the model in response to the
estimated error each time the model weights are updated. When the learning rate is too large, gradient
descent can inadvertently increase rather than decrease the training error. When the learning rate is
too small, training is not only slower, but may become permanently stuck with a high training error.
Comparing to the state of the art algorithm which are mainly focusing on time-based learning rate or
adaptive gradient methods, our algorithms are performance-based. The algorithm we introduce can
adjust its learning rate based on the decreasing of loss value. After introducing event-based control
into the algorithm, the algorithm not even outperforms all the state of the art learning rate algorithm
under on-line learning scenario, it can also largely reduce the training time to result in the same
accuracy.

As we bring in feedback control system into the training of neural network, Chapter. 8 introduces
the plant - Convolutional Neural Network, the control signal - learning rate and the error - loss value.
It also presents the setting of on-line learning, the performance metrics using to compare between
the algorithms, and the state of the art learning rate algorithms. Chapter. 9 presents the algorithm of
Exponential / Proportional-Derivative (E/PD) Control. It is a performance-based learning rate algo-
rithm which periodically update the learning rate based on the changes of loss value. In Chapter. 10,
continuing on the E/PD Control, we incorporate two event-based control: (1) Event-Based Learning
Rate and (2) Event-Based Learning Epochs into E/PD. Event-Based Learning Rate is implemented to
prevent sudden drop of the learning rate when the model is approaching the optimum; Event-Based
Learning Epochs decides, based on the learning speed, when to switch to the next data batch. Even-
tually, Chapter. 11 concludes on the contributions of those works regarding learning rate control, and
gives perspectives for future works.





Chapter 8

Neural Network and Learning Rate:
Background and Related Works

The learning rate is probably one of the most important hyperparameter to take into account when
training a machine learning model. Each time the model weight is updated, learning rate controls
how much the model changes based on the estimated prediction error. Choosing optimal values of
learning rate is challenging, because a value that is too small may cause a long training process, while
a value that is too large may result in updating weights too fast and make the training process unstable.
No matter the learning rate is too big or too small, it makes model converge to sub-optimal values of
the weights.

Our objective is to use control theory to dynamically adjust learning rate during the training pro-
cess, in order to make the controlled system converge faster. Our experiments are based on on-line
learning scenario, and compared with a bunch of state of the art learning rate optimizers. Therefore,
in the following part, we first introduce the model we would control, which is a Convolutional Neural
Network as well as its performance metrics. Second we give details about the on-line learning setting.
In the end, state of the art learning rate algorithm will be presented.

8.1 Convolutional Neural Network

Convolutional Neural Network (CNN) [77] is a kind of deep neural network made to process high-
dimensional input data (such as images, website analysis for advertising, finance analysis), it takes
spatial structure of data into account, hierarchically learning the features from low to high-level pat-
terns. CNN is the state-of-the-art learning mechanism for image classification and due to its perfor-
mance it has become a default method of choice to solve this kind of problem among many other
techniques such as support vector machines or multilayer perceptron.

A CNN (depicted for example in Fig. 8.1) consists of an input and an output layer, as well as
multiple hidden layers, which typically consist of a series of convolutional layers. The activation
function is commonly a ReLU layer (rectified linear unit applied to extract linear and non-linear
relations in the data) while the final convolution often involves back-propagation in order to more
accurately weight the result. Each neuron takes the input values coming from the previous layer and
computes an intermediate output value by applying a specific function determined by a vector of
weights and, eventually, a bias. The objective of the learning phase is to make iterative adjustments
to these biases and weights to better fit the data. These weights in the CNN are usually updated using
Stochastic Gradient Descent (SGD) techniques, which are very similar to the algorithm of steepest
descent classically used in control [80].
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Figure 8.1 – Structure of Convolution Neural Network.

The equation below shows how SGD updates the weights of the CNN:

Wi =Wi−1−η
∂J
∂W

where vector Wi represents the weights vector computed at ith discrete time instant, η is positive and
denotes the learning rate, J is the loss function (or cost function) which can be seen as an error. As
we are always trying to minimize the loss function, we suppose that there exists an optimal solution
of parameters W ∗i . To update the parameters from learning, back-propagation calculates gradient for
each layer, we use the product of the gradient and a learning rate to update the parameters. Fig. 8.2a
sketches the process of the SGD finds the global minimum (also called optimum). Training a CNN
is solving a global optimization problem with random initial parameters and a varying learning rate.
If we are far from optimum, we should have a large learning rate to quickly approaching it and when
we are close to the optimum, we want to have a small step each time in order to not miss it. Gradient
indicates the direction, while learning rate scales the step. If we constantly keep a big learning rate, we
will fall in the the situation of Fig. 8.2b, where we may never reach to the optimum. If we constantly
keep a small learning rate, we risk to stop at a sub-optimal situation as showed in Fig. 8.2c.

8.2 On-line Learning
In computer science, on-line is a method of machine learning in which data becomes available in
a sequential order and is used to update the prediction.In opposition to that entire batch learning
techniques which generate the best predictor by learning on the entire training data set at once. On-
line learning is a common technique used in areas of machine learning where: (1) it is computationally
infeasible to train over the entire dataset due to the capacity of memory of computer; (2) whole dataset
is not totally available before training process start; (3) data distribution changes over time.

To emulate on-line learning scenario, we assume that there is no variation of data distribution
between different data batches. We consider a dataset T with a total number of training instances
T , each one belonging to a class c : Z+ → [1,C]. The whole dataset is composed of B subsets (i.e.
batches), Ti is the ith batch where i :Z+→ [1,B]. Each batch equally contains S data instances and will
be used to train the model for N epochs (i.e. N times). At the reception of a new batch, the learning
rate algorithm is reset with initial values. Classical simulated on-line learning scenario is illustrated
in Fig. 8.3.
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(a) SGD process (b) Big learning rate

(c) Small learning rate

Figure 8.2 – SGD Process and Influence of Learning Rate.

8.3 Performance metrics
There exists many metrics to evaluate the performance of a CNN model (see for example [85]), we
used two of the most classical: classification accuracy as one of the most used classification metric,
and loss value.

For evaluating, machine learning researchers typically prepare a testing dataset which will not be
used during the training process. At the end of each training phase (called from now on epoch), the
testing dataset is used to evaluate the model by measuring the classification accuracy and the loss
value. Accuracy is defined as:

Accuracy =
Number of correct prediction
Total number of prediction

(8.1)

The loss L is defined as the difference between the predicted value by the model and the true value.
The most common definition of L used for classification problems is cross-entropy [118]:

L =− 1
V

V

∑
p=1

C

∑
q=1

yp,q log(ŷp,q)+(1− yp,q) log(1− ŷp,q) (8.2)
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Figure 8.3 – On-line Learning Scenario.

where V is the size of testing dataset and C is the total number of classes and also the length of the
prediction vector which is a probability vector (sum of all the bits is 1). ŷp,q denotes the qth bit value
of prediction vector for data sample p while yp,q is the ground truth, indicating if data p belongs to
class q (yp,q = 1) or not (yp,q = 0).

In general, loss and accuracy are two negative correlated metrics, and we could expect to have
a higher accuracy if we have a lower loss. Nevertheless we could also see the case where we have
the same accuracy and different loss values since the distance between prediction and ground truth
(i.e. loss) is a continuous variable while accuracy is a true or false value for a particular sample.
For instance, consider a binary (0, 1) classification, where we set a threshold at 0.5 which means
prediction between 0.5 and 1 will be predicted as class 1, between 0 and 0.5 will be predicted as class
0. For a test data whose true class is 1, if output from Model A is 0.51, and output from Model B is
0.99, then the predicted class from model A and B are all class 1. Obviously, 0.99 is closer than 0.51
to 1, so Model B has a lower loss. In this case, we conclude that model B is more stable than model
A even though they have the same accuracy.

Final loss and final accuracy reveal the performance of the final model that we use. Nevertheless,
stability metrics are also important, if the accuracy curve experiences a big variance near the end of
training process, even though we could have a good final result, we could not assure that we always
get this result. Thus in our evaluation, we include standard deviation of the accuracy during the
last 10% training epochs [95]. Convergence speed of accuracy is another metrics to evaluate the
performance, as we focus on on-line learning scenario, so the interval between two batch data can be
short. With a limited time, a faster accuracy convergence could lead to a better model performance
comparing to other algorithms. Therefore, we will report the first epoch when the experiment reaches
its 95% final accuracy as a metric, for the same final accuracy the smaller this epoch the faster the
convergence speed. To evaluate convergence speed, another metric could also be the first epoch when
the experiment reaches a fixed accuracy. The disadvantage of reporting the first epoch of reaching
its own 95% final accuracy is that if an experiment’s final accuracy is very low, then the first epoch
to reach its own 95% final accuracy will be very small. The difficulty of reporting the first epoch of
reaching a fixed accuracy is to choose this certain threshold of accuracy. For some experiments, the
algorithm may not reach this accuracy.
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8.4 Related Work of Learning Rate Optimizer

8.4.1 Time-Based Learning Rate Strategy
Time-Based Decay is one kind of time-based strategy. The theory behind is simple: in the begin-
ning, as our initial weights are far from optimum point, we should use large learning rate to quickly
approach the optimum. As training process goes on, we will get closer to optimum, then learning
rate should be smaller, so that we does not skip over the optimum. In this learning rate strategy, η

(learning rate) decreases following a predefined decay function. The only differences between these
strategies is that for some of them, the learning rate decreases slowly in the beginning and faster in
the end. And for others are the opposite. However, some paper suggests that adding some variations
during the decay can improve the performance. For instance [2] introduced a time decreasing law
with small sine oscillations.

The monotonous decrease of the learning rate is a well-established use that has rarely been ques-
tioned. However, Smith [123] presents promising results with a cyclical learning rate law of triangular
shape, where two boundaries are defined and η cyclically varies between them.Indeed, we advocate
that a brief increase in the learning rate could enable both to reach faster the global minimum and
avoid being blocked in a local one.

The time-based learning rate algorithms can be summarized as above. The disadvantage of these
algorithms is that the learning rate path is fixed before training, it cannot be adjusted when necessary.
The experiments with time-based learning rate are illustrated in Sec. 9.4.4.

8.4.2 Adaptive Learning Rate Strategy
Before introducing adaptive learning rate algorithms, we need first introduce two concepts: Mo-
mentum [108] and Nesterov accelerated gradient [102]. The Momentum method is a method to
accelerate learning using SGD in the relevant direction showed in Fig. 8.4. In particular SGD suffers
in the following scenarios: (1) Error surface has high curvature, (2) Small but consistent gradients
and (3) Noisy gradients. It does this by adding a fraction γ of the update vector of the past time step

Figure 8.4 – Momentum: red arrow represents the direction of gradient, blue arrow represents the
direction of momentum. (Source: A. Zhang’s presentation on SASPS [141])
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to the current update vector:

vt = γvt−1 +η
∂J
∂W

Wt+1 =Wt− vt

(8.3)

The momentum term γ is usually set to 0.9 [43] or a similar value, and η is the learning rate that user
needs to choose.

Nesterov accelerated gradient (NAG) is a way to give our momentum term this kind of prescience.
We know that we will use our momentum term γvt−1 to move the parameters W . Computing W −
γvt−1 thus gives us an approximation of the next position of the parameters (the gradient is missing
for the full update), a rough idea where our parameters are going to be. We can now effectively look
ahead by calculating the gradient not with respect to our current parameters but with respect to the
approximate future position of our parameters:

vt = γvt−1 +η
∂J
∂W

(Wt− γvt−1)

Wt+1 =Wt− vt

(8.4)

We choose to set the momentum term γ to a value of 0.9. While Momentum first computes the
current gradient (small blue vector in Fig. 8.5) and then takes a big jump in the direction of the updated
accumulated gradient (big blue vector), NAG first makes a big jump in the direction of the previous
accumulated gradient (brown vector), measures the gradient and then makes a correction (red vector),
which results in the complete NAG update (green vector). This anticipatory update prevents us from
going too fast and results in increased responsiveness [119], which has significantly increased the
performance of recurrent neural network (RNN) on a number of tasks [13].

Figure 8.5 – Nesterov Update Vector. (Source: G. Hinton’s Coursera lecture 6c [131])

• RMSProp is an unpublished adaptive learning rate method proposed by Geoffrey Hinton in
Lecture 6e of his Coursera Class. It keep the moving average of the squared gradients for each
weight. And then divide the gradient by square root the mean square. This is why it is called
RMSProp (Root Mean Square Propagation).

E[g2]t = βE[g2]t−1 +(1−β )g2
t

Wt+1 =Wt−
η√

E[g2]t
gt

(8.5)

RMSProp update rules are showed in eq. (8.5), where E[g2]t is the moving average of squared
gradients, gt is the gradient at time t (i.e. ∂J

∂W ), η is the learning rate, β is the moving average
parameter.
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• Adam [72] is an adaptive learning rate optimization algorithm that has been designed specifi-
cally for training deep neural networks. It can be looked at as a combination of RMSprop and
Stochastic Gradient Descent with momentum, but with bias correction terms for the first and
second moments.

it compute the decaying averages of past and past squared gradients mt and vt respectively as
follows:

mt = β1mt−1 +(1−β1)gt

vt = β2vt−1 +(1−β2)g2
t

(8.6)

where gt is the gradient at time t, and β1 and β2 are newly introduced hyper-parameters of the
algorithm. The original paper proposes default values of 0.9 and 0.999 respectively, which are
usually never changed in practice. The vectors of moving averages are initialized with zeros at
the first iteration. The authors of Adam observe that they are biased towards zero, especially
during the initial time steps, so they counteract these biases by computing bias-corrected first
and second moment estimates:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(8.7)

where β t
1 and β t

2 denote the value beta to the power of t. The only thing left to do is to use those
moving averages to scale learning rate individually for each parameter. The way it is done in
Adam is very simple, to perform weight update we do the following:

Wt+1 =Wt−
η√

v̂t + ε
m̂t (8.8)

where the authors propose 10−8 for ε , and η is the parameter of learning rate that user can
choose.

• Nadam [33] (Nesterov-accelerated Adaptive Moment Estimation) combines Adam and Nes-
terov accelerated gradient (NAG). As we have seen before, Adam can be viewed as a combi-
nation of RMSprop and momentum: RMSprop contributes the exponentially decaying average
of past squared gradients vt while momentum accounts for the exponentially decaying average
of past gradients mt . Author of [33] propose the modifications of original NAG, and the final
Nadam update rule:

Wt+1 =Wt−
η√

v̂t + ε
(β1m̂1 +

(1+β1)gt

(1−β t
1)

) (8.9)

where the definitions for β1, m̂t and v̂t are the same as in 8.7.

• AMSGrad [111]: As adaptive learning rate methods have become the norm in training neural
networks, Wilson et al. [138] suggested that adaptive gradient methods do not generalize as
well as SGD. These methods tend to perform well in the initial portion of training but are
outperformed by SGD at later stages of training. Reddi et al. [111] formalize this issue and
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pinpoint the exponential moving average of past squared gradients as a reason for the poor
generalization behaviour of adaptive learning rate methods.

In settings where Adam converges to a suboptimal solution, it has been observed that some
minibatches provide large and informative gradients, but as these minibatches only occur rarely,
exponential averaging diminishes their influence, which leads to poor convergence. The authors
provide an example for a simple convex optimization problem where the same behaviour can
be observed for Adam.

To fix this behaviour, the authors propose a new algorithm, AMSGrad that uses the maximum of
past squared gradients vt rather than the exponential average to update the parameters. Instead
of using vt (or its bias-corrected version v̂t) directly, we now employ the previous vt−1 if it is
larger than the current one:

v̂t = max(v̂t , ˆvt−1) (8.10)

For simplicity, the authors also remove the debiasing step that we have seen in Adam, they use
the same update rule as in eq. (8.6) to update mt and v̂t , and use eq. (8.10) to update v̂t , then the
AMSGrad weights updat rule is:

Wt+1 =Wt−
η√

v̂t + ε
mt (8.11)

• AdaBound [89] addressed the same problem mentioned in AMSGrad, as researches suggested
adaptive gradient methods do not generalize as well as SGD. It proposes new variants of ADAM
and AMSGRAD, which avoids potential negative effects on generalization of excessively large
and small gradients. They employ dynamic bounds on learning rates in these adaptive methods,
where the lower and upper bound are initialized as zero and infinity respectively, and they both
smoothly converge to a constant final step size. The new variants can be regarded as adaptive
methods at the beginning of training, and they gradually and smoothly transform to SGD (or
with momentum) as time step increases.

Above adaptive gradient state of the art algorithms are tested against our algorithms in Sec. 10.3.4.



Chapter 9

Exponential / Proportional-Derivative
Control of Learning Rate

After reviewing the background and related works of neural network and learning rate optimizer, in
this chapter, we advocate using a control-based approach to adapt the learning rate in order to reach a
high network accuracy in a short amount of time. The principle is to switch from time decreasing rules
to a performance-based rule to be able to increase the learning rate when necessary. P (Proportional)
and PD (Proportional-Derivative) control strategies are initially developed. Then we present E/PD-
Control, a hybrid strategy for setting the learning rate that combines both a time-based rule, with a
first initial phase of an exponential growth of the learning rate, followed with a PD controller triggered
by the network loss function. The initial E (Exponential) phase additionally allows the PD to be tuned
on-line, thus getting rid of the need of an off-line profiling phase to adapt to a new dataset or network
architecture. The E/PD-Control is evaluated on two classical state of the art datasets (CIFAR-10 [76]
and Fashion-MNIST [139]), which are labelled image datasets commonly used to train computer
vision algorithms [63]. Our control shows higher accuracy, faster rising time, lower final loss and
more stable results than the state of the art techniques. Robustness regarding the initial value of the
learning rate is also illustrated.

In the remaining of this chapter, we first present the problem statement in a control theory formu-
lation and illustrate two state of the art learning rate strategies (Sec. 9.2). The control law is presented
in Sec. 9.3 and its performance evaluation is given in Sec. 9.4.

9.1 Introduction
In chapter Sec. 8.4 of Chapter 8, we can see that AMSGrad and AdaBound are all aimed to solve
the problem that adaptive gradient methods do not generalize as well as SGD, which makes these
methods to perform well in the inital portion of training but are outperformed by SGD at later stages of
training. Therefore, in this chapter, we propose a new solution Exponential / Proportional-Derivative
Control, which is totally based on SGD, but which dynamically adjusts its learning rate based on the
performance of algorithm. Here we consider the continual learning scenario introduced in Sec. 8.2
of Chapter. 8 where data comes dynamically in batches (not all data is initially available), previous
data batches being discarded at the arrival of a new one. This type of scenario is very common in our
everyday life if we think about sequential collection of a video flow or daily crowdsourcing [99][83].

In the gradient-based algorithms, there are two factors that influence the reach of the gradient
global minimum: the network’s weights initialization and the learning rate policy. The weights ini-
tialization is often dealt with by setting them all null or generated from a uniform distribution [50].
The learning rate parameter is used to weight the impact of a new epoch on the previously learned
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model. The learning rate controls the speed to approach the minimum. A large learning rate will
accelerate the converging speed but at the risk of diverging [12]. A small learning rate will slowly
approach the minimum with less tendency to skip over it, but may fall into a local minimum.

The objective is thus to set the learning rate strategy in order to learn from the data as fast as
possible to reach the maximum CNN’s predictions accuracy. The dynamic data collection scenario
raises the challenge of a learning rate scheduling able to deal with the combination of epoch learning
(take the most out of the currently available data) with batch learning (being able to include new data
without forgetting the previous ones).

A learning rate strategy is defined by its initial value and its evolution law. The tuning of both is
a significant challenge for the deep learning community [67]. According to Bengio [12], a learning
rate of 0.01 typically works as a default value for standard multi-layer neural networks. He also
recommends a classic strategy to find a more suitable value for a given architecture and dataset. Its
principle is to try several values on a subset of the dataset, compare the best validation accuracy for a
fixed training time and the lowest training time to reach a given validation accuracy [123].

Learning rate evolution laws are usually of two kinds: (1) time-based or (2) adaptive. We have
explained them in Chapter. 8. In this chapter, we mainly focus on comparing with the time-based
algorithms. The issue with the state of the art time-based learning rate laws regarding our continual
learning scenario is that they do not take into account the dynamic of data coming in. They are
predefined functions that do not adapt to the performances of the CNN training. Even by re-initializing
the learning rate rule at each batch, it will not take into account the precision improvement through
time that results from the memory of the previous batches.

In this chapter, we advocate switching to a performance-based adaptation, in order to improve the
learning efficiency.

9.2 Background & Motivation
We consider a CNN as being our plant, and the data used in training is seen as a disturbance, see
Fig. 9.1.

Figure 9.1 – CNN control schema.



81

The learning rate η is our control signal. To illustrate that the learning rate is a control signal
for our continual scenario, we study the impact of different constant learning rate on the variation
of the accuracy and loss functions over epochs. Fig. 9.2 is the application of three constant learning
rates η ∈ {0.005,0.01,0.05} (corresponding to Bengio’s recommendation [12], larger and smaller)
for training on CIFAR-10 dataset, with new data batches arriving every 60 epochs. The accuracy
and loss signals differ according to the learning rate (see Fig. 9.2): with η = 0.05, the accuracy
improves the fastest and the loss also quickly converges to its lower limit. However, the noise of the
curve at the last epochs is also higher than with the two other scenarios because a large learning rate
oscillates around the minimum. When η = 0.005, the accuracy increase is slower but the loss function
varies more smoothly, and the loss value rarely rises. Since the learning rate is able to influence our
performance indicators, it is suitable as a control signal. From Fig. 9.2 we can also see that the loss
function variation is coherent with the choice of learning rate, therefore we infer the loss is suitable
as a measurable signal.

(a) Validation accuracy (b) Loss function

Figure 9.2 – Impact of different constant learning rates on accuracy and loss (CIFAR-10).

The experiments shown in Fig. 9.2 illustrate the advantages and drawbacks of large and small
learning rates. A natural thought is to combine their benefits through learning rate scheduling: an
initial phase with a large learning rate to quickly converge to a high-level accuracy, then a smaller
value to smoothly approach the minimum and avoid the bumps on validation accuracy and loss. In
the state of the art, there are some commonly used learning rate strategies that vary the learning rate
through time: (i) Keras-Time-Based-decay and (ii) Exponential-Sine-Wave-decay.

Keras-Time-Based-decay is a commonly and widely used learning rate strategy in Keras[26],
which is a famous python deep learning library. The learning rate is computed as follow:

η(k) =
η(k−1)
1+δk

(9.1)

where k is the number of epochs since the arrival of the last batch, k ∈ {1, . . . ,E}. δ is a hyperparam-
eter enabling to tune the steepness of the time decay. We set η(0) = 0.01 and δ = 0.001 as suggested
in [12].

The second common schedule is the exponential decay, it has been successfully used in neural
network training. A good implementation is exponential decay sine wave learning rate schedule [2].
The original schedule is implemented to an off-line setting, so to adapt this learning rate schedule into
our continual setting, we need to adjust their strategy to allow the learning rate decays to around 0 at
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the ending epochs of each batch. We will refer to this strategy as Exponential-Sine-Wave-decay. The
adapted version is calculated as follow:

η(k) = η(0)e
−αk

E (γsin(
βk
2π

)+ e
−αk

E +0.5) (9.2)

where k shares the same definition as in eq. (9.1); E is the training epochs per batch; α , β and γ are
three hyperparameters. In order to have a same behavior as in [2] during our shorter E, we set α = 3,
β = 6 and γ = 0.4. The constant 0.5 in the equation is important, it makes sure that η(k) is strictly
positive.

9.3 Performance-based Learning Rate Laws
In all the related work strategies, the learning rate is decreasing with time, in a predefined manner.
The only differences between these strategies is that for some the learning rate decreases slowly in
the beginning and faster in the end and for others is the opposite. We therefore introduce our control
strategy where the learning rate is automatically computed based on the loss function (see Fig 9.1).
Nevertheless, according to the definition of the loss function, the absolute loss value in itself does not
give us much information since different size of training dataset can change the absolute loss value.
Therefore, we normalize the value of loss(k) by loss(k = 0), where loss(k) represents the loss value
at kth epoch since the arrival of the last batch.

Subsequently, we try three different control laws for computing the learning rate η : Proportional-
Control (P-Control), Proportional derivative-Control (PD-Control) and a Mixed Exponential PD-
Control (E/PD-Control).

P-Control In this case the learning rate depends proportionally on the loss value as follows:

η(k) = KP
loss(k)
loss(0)

(9.3)

In general the value of loss(k)
loss(0) varies between 0 and 1. Indeed, as the loss function decreases thanks to

the Stochastic Gradient Descent, we know that it is approaching the minimum of the loss function and
therefore the learning rate should be decreased in order not to skip it. The choice of KP is important for
the speed of convergence. We first make it equal to the same value as the empirical starting learning
rate from [26]: η(0) = KP = 0.01. The reason is that we believe loss(k) should gradually decrease.
Therefore according to eq. (9.3), η(k) will decrease with time, at a changing range between η(0)
and 0. Making sure that learning rate converges over time is important for machine learning model,
which ensure the learning process will not diverge. Experiments in Sec. 9.4.5 will show the effects
with different KP on final model’s performance.

PD-Control On one side, the hypothesis behind P-Control is that the loss is always decreasing: as
we are getting closer to a minimum, the learning rate should slow down to better approach it. On the
other side if the loss has decreased during last epoch we consider being in the good direction to find
the minimum so we should reward last learning epoch by increasing the learning rate. This can be
seen as adding an derivative action to our controller. We express our PD-Control as follows:

η(k) = KP
loss(k)
loss(0)

−KD
loss(k)− loss(k−1)

loss(0)
(9.4)
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where KP = 0.01, and the derivative coefficient KD is empirically chosen at 5 times η(0). As we
choose η(0) = 0.01 , then KD = 0.05. As −(loss(k)− loss(k−1)) could also be negative, the deriva-
tive part will introduce oscillations to the learning rate. In order to avoid that η(k) becomes negative,
the PD-Control is turned to a P-Control if η(k) in PD-Control gets a negative value. Indeed, the
P-Control will always return a positive value for the learning rate, as the loss function is positive by
definition.

E/PD-Control This third control law aims at accelerating the convergence speed by exponentially
increasing the learning rate at the beginning of learning a new batch, since the data is new there are
more information to learn. We present a two phase algorithm to control the learning rate: (i) an
initial Exponential growth followed by (ii) a PD-Control. During the exponential growth period, the
learning rate is increased each time step by a factor 2 to quickly reach the minimum. This phase is
stopped when the loss starts increasing, and the learning rate is afterwards ruled by the PD-Control
law. The PD parameters are initialized with the last value of the learning rate before loss growth. The
E/PD-Control behavior during one batch is summarized in Algorithm. 1.

Algorithm 1 E/PD-Control

1: η(0) = 0.01
2: k = 1
3: while loss(k)≤ loss(k−1) do
4: η(k) = 2η(k−1) = 2kη(0)
5: k = k+1
6: end while
7: η(k) = η(k−1)/2
8: KP = η(k−1)/2
9: KD = 5×η(0)

10: for i ∈ {k+1, . . . ,E} do

11: η(i) = KP
loss(i)
loss(0)

−KD
loss(i)− loss(i−1)

loss(0)
12: if η(i)< 0 then

13: η(i) = KP
loss(i)
loss(0)

14: end if
15: end for

from Algorithm. 1, one thing we need to make sure is that learning rate should always be positive.
As the steps (1st−7th) are the exponential increase phase, the positive learning rate is guaranteed. In
order to make the calculated η(i) to be also positive, we add the branch at step 12, if η(i) < 0, we
will turn the PD control to P control. But instead of using the condition at step 12, we can also add
some limitations on KP and KD to make sure the calculated η(i) at step 11 is always positive, that will
avoid our algorithm to turn to P control any more.

To ensure the calculated η(i) be strictly positive, it means:

KP
loss(i)
loss(0)

−KD
loss(i)− loss(i−1)

loss(0)
> 0 (9.5)

this condition can be rewritten as:

KP > KD(1−
loss(i−1)

loss(i)
) (9.6)
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according to our calculation, by satisfying the following condition:

KP > KD > 0 (9.7)

we can guarantee η(i) is strictly positive. That is because: if loss(i−1)> loss(i), (1− loss(i−1)
loss(i)

) is

negative (we know that loss is non-negative if the loss function is cross-entropy or mean squared error
(MSE) which are the most popular loss functions used in classification problem. Another notice is that
loss is rarely 0. Even the prediction accuracy can be 100%, the loss can hardly be 0. In reality, that
is almost impossible, so we do not discuss the situation where loss = 0), then Condition (9.6) holds;

If loss(i−1) = loss(i), 1− loss(i−1)
loss(i)

= 0, Condition. (9.6) is still satisfied; Finally if loss(i−1)<

loss(i), (1− loss(i−1)
loss(i)

) ∈ (0, 1). Condition. (9.6) validates too. Therefore, if we do not use the

branch at step 12, and if we can make sure the condition. (9.7) always holds, then η(0) can also be
guaranteed to be positive.

9.4 Control Laws Evaluation
In this section, the P, PI and E/PI-Control laws are evaluated in comparison with the state of the art.
The convergence of the E/PI-Control law is highlighted, and its robustness with regard to its initial
configuration is presented.

9.4.1 Experimental setup
The controllers are evaluated on two complex state of the art datasets: CIFAR-10 [76] and Fashion-
MNIST [139], as we did not find datasets with same characteristics and complexity containing eco-
nomic data. The CNN and scenario configurations for the two datasets are detailed in Tab. 9.1. As
the images in CIFAR-10 have colors and are larger than the ones of Fashion-MNIST, a more complex
CNN setting with more layers and parameters is used. Meanwhile, as there are more informations
to extract from CIFAR-10, the number of epochs per batch is larger, allowing the accuracy curve to
converge. All the values of hyperparameters of Eq. (9.1) and (9.2) we showed in Sec.9.2 are tuned
for CIFAR-10, as Fashion-MNIST has shorter epochs per batch, we will change δ to 0.01 of Eq.
(9.1), and set α = 2, β = 18 of Eq. (9.2) for Fashion-MNIST experiment learning rate schedule. This
pre-set is done in order to be as least dataset depended as possible.

To eliminate the influence of the CNN’s weights starting point to the final accuracy, we initialize
the weights of each layer of CNN by Xavier uniform initializer [50], all the results will be averaged
on 3 time experiment results. All the experiments are executed on Google Cloud ML-Engine with a
P100 GPU. All code is implemented with Keras library [26].

For performance evaluation, we measure several indicators on the accuracy and loss signals, the
first one being their final value. To quantify the accuracy’s converging speed, we will report for each
experiment the epoch at which they reached 95% of their final accuracy. To compare the influence
of each learning rate strategy on stability of validation accuracy, we will also compare the standard
deviation of the accuracy curve on the last 10% epochs of each experiment.

9.4.2 Convergence analysis
Stability of the presented algorithms needs to be proved to ensure that the loss will not diverge, and
ideally converge to 0. The stability of the algorithm relies on the SGD: as the direction of the gradient
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Table 9.1 – CNN configuration

Use case CIFAR-10 Fashion-MNIST

#data instances to train 50,000 60,000
#data instances to test T 10,000 10,000
#classes C 10 10
image size 32×32 28×28
data batch size B 10000 10000
#trainng epochs per batch E 60 20
#CNN layers 28 15
#CNN parameters 1,641,858 422,538

is by construction always set to decrease the loss. The only case when the loss might increase is
because the learning rate is too large, we skipped the minimum. The stability of the P and PD-
Controllers is ensured via a proper parametrization of KP and KD. The E/PD-Control law allows the
learning rate to exponentially grow as long as loss decreases, however the learning rate is switched
to a PD law as soon as the loss starts to increase. The reset of the learning rate to the previously best
value (7th−9th line of Algorithm 1) enables to properly initialize the PD.

9.4.3 P, PD and E/PD-Control Performances Validation
The three control laws presented in Sec. 9.3 are evaluated on CIFAR-10. Results are reported in
Fig. 9.3 through the accuracy 9.3a and loss functions 9.3b, and the corresponding control signals
are illustrated in Fig. 9.4, For the P and PD in 9.4a and for the E/PD law in 9.4b. There are few
differences between P and PD control performances, while the E/PD-Control is significantly faster
(61 epochs rising time compared to 130 for the P and PD), converges to a higher accuracy (+7%) and
lower loss (-37%) and the standard deviation of the accuracy at the end of the experiment is three
times lower. We see from the first epochs that the E-phase enables to properly tune the initial value
of the PD, which then significantly increases the validation accuracy. The P and PD-Control learning
rate signal (Figure 9.4a) illustrates that a reset of the learning rate at the arrival of a new batch is not
necessary beneficial if the value is not carefully chosen, as for the E/PD-Control.

The loss function with the PD-Control declines a little bit faster than with the P-Control at be-
ginning, and is not presenting a large peak around epoch 240. Those advantages made us opt for the
PD-Control to combine with the initial E-phase.

9.4.4 Comparison with state of the art
Comparison of the state of the art learning rate strategies to our E/PD-Controller is provided for
CIFAR-10 (Fig. 9.3 and 9.4) and for Fashion-MNIST (see Fig. 9.5 for the accuracy and loss and
Fig. 9.6 for the learning rate evolution through epochs).

E/PD-Control provides the best results for all the indicators for CIFAR-10. It converges faster
and has a smallest standard deviation of last 10% epochs among all the strategies, it reaches at a
higher final validation accuracy (+3%) and a lower loss. Keras-Time-Based-decay has a closer final
accuracy and loss to E/PD-Control. But the deviation of its accuracy curve is bigger than E/PD-
Control, especially at the beginning of learning a new batch.

Regarding Fashion-MNIST dataset, results are similarly in favor of the E/PD-Controller, even if
the differences are smaller. As this dataset is easier than CIFAR-10, all strategies reached a high
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(a) Validation accuracy (b) Loss function

Figure 9.3 – Performances of state of the art, P, PD and E/PD-Control (CIFAR-10).

(a) P and PD-Control (b) E/PD-Control

Figure 9.4 – Control signal of state of the art, P, PD and E/PD-Control (CIFAR-10).

validation accuracy and lower loss, the standard deviation of accuracy of last 10% epochs is also very
small.
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(a) Validation accuracy (b) Loss function

Figure 9.5 – Performances of state of the art and E/PD-Control on Fashion-MNIST.

(a) State of the art strategies (b) E/PD-Control

Figure 9.6 – Control signal for the state of the art and E/PD-Control on Fashion-MNIST.

9.4.5 Robustness to initial value of the learning rate
The E/PD-Control is now compared with the best strategy from the state of the art (Keras-Time-
Based-decay) when the initial learning rate varies. Results are showed in Table 9.2 for CIFAR-10 and
Table 9.3 for Fashion-MNIST.

Among all the experiments on CIFAR-10, there are only one case for which Keras-Time-Based-
decay law has a better indicator (final validation accuracy at initial learning rate 0.05). The difference
is very small, and standard deviation of the indicator itself is large. Moreover, if we check the ac-
curacy’s standard deviation during the last 10% epochs, Keras-Time-Based-decay still has a strong
oscillation, which makes the model unpredictable. E/PD-Control also shows the advantage on con-
verging time, it makes the model converge faster and rarely affected by the initial values.

Tab. 9.3 shows the robustness results on Fashion-MNIST. E/PD-Control still shows a fast converg-
ing speed, reaching 95% of final accuracy just using 7 to 10 epochs. The performances for the final
loss and accuracy final standard deviation are similar for the two strategies. The E/PD-Control’s final
accuracy performances among all the experiments is more stable than with Keras-Time-Based-decay,
which again, shows that E/PD-Control is more robust to the initial learning rate variations.
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Table 9.2 – Robustness experiments with varying initial learning rate on CIFAR-10. Mean value (and
standard deviation) over 3 runs. The best results are highlighted in bold.

Algo-
rithm

Initial
learning

rate
Final loss Final validation

accuracy (%)

Final accuracy
standard
deviation

First epoch to reach
95% accuracy

Keras 0.001 0.849(0.023) 79.075(0.485) 0.371(0.053) 161.333(24.495)/300
E/PD-
Control

0.001 0.648(0.015) 82.035(0.465) 0.057(0.013) 61.333(0.471)/300

Keras 0.002 0.745(0.026) 80.180(0.445) 0.415(0.049) 118.333(9.78)/300
E/PD-
Control

0.002 0.586(0.006) 83.150(0.225) 0.077(0.017) 62(0)/300

Keras 0.05 0.727(0.006) 85.640(0.523) 1.630(0.085) 103.333(2.859)/300
E/PD-
Control

0.05 0.555(0.005) 85.060(0.090) 0.117(0.001) 61.333(0.471)/300

Keras 0.1 0.829(0.180) 84.433(2.82) 1.609(0.432) 77.333(32.785)/300
E/PD-
Control

0.1 0.578(0.013) 85.075(0.585) 0.345(0.16) 65(0.816)/300

Table 9.3 – Robustness experiments with varying initial learning rate on Fashion-MNIST. Mean value
(and standard deviation) over 3 runs. The best results are highlighted in bold.

Algo-
rithm

Initial
learning

rate
Final loss Final validation

accuracy (%)

Final accuracy
standard
deviation

First epoch to
reach 95%
accuracy

Keras 0.001 0.413(0) 85.055(0.035) 0.054(0) 37(0.816)/120
E/PD-
Control

0.001 0.334(0.002) 87.955(0.105) 0.023(0.008) 10.667(1.247)/120

Keras 0.002 0.360(0.001) 86.850(0.005) 0.066(0.002) 25.667(1.247)/120
E/PD-
Control

0.002 0.350(0.008) 87.415(0.103) 0.057(0.011) 8.333(0.471)/120

Keras 0.05 0.282(0.026) 89.785(0.920) 0.145(0.012) 16.667(6.532)/120
E/PD-
Control

0.05 0.263(0.006) 90.425(0.200) 0.094(0.013) 9.333(1.700)/120

Keras 0.1 0.265(0.016) 90.400(0.674) 0.133(0.010) 9(3.265)/120
E/PD-
Control

0.1 0.249(0.003) 91.340(0.140) 0.114(0.015) 7(0)/120

9.5 Conclusion

When performing image classification tasks with neural networks, often comes the issue of on-line
training, from sequential batches of data. Iterative training of CNNs is driven by the learning rate -
how much to update the network weights with the new data - which value is usually ruled by a time
decreasing function. This chapter presents a control approach to the challenge of on-line training
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of CNNs, that decides the learning rate value based on the expected learning need (i.e. the CNN
loss function) instead of being time-based. E/PD-Control is a strategy that combines a phase of
exponential growth of the control signal (i.e. learning rate) with a PD controller, which parameters
are automatically adapted based on the E-phase.

Stability of the control strategy is provided, and evaluation highlights that E/PD-Control achieves
a higher accuracy level in a shorter time than the state of the art solutions. Robustness of the approach
is illustrated by its performances on two different datasets, and enforced by a sensitivity analysis
regarding its initialization.

This work could be further extended by the addition of a triggering mechanism to smartly adapt
the number of epochs needed at each batch processing. Moreover, we want to investigate the perfor-
mances of the E/PD-Control in the scenario when new classes appear in some batches.





Chapter 10

Event-Based Control for Continual Training
of Neural Networks

In this chapter, we continue to address the problem we mentioned in previous chapters where we still
consider the continual learning scenario as in Sec. 8.2 in Chapter. 8, but we propose two Event-Based
control loops to adjust the learning rate of the E (Exponential)/PD (Proportional Derivative)-Control
which in presented in Chapter. 9. In order to improve performance, the first Event-Based control loop
would be implemented to prevent sudden drop of the learning rate when the model is approaching the
optimum. The second Event-Based control loop will decide, based on the learning speed, when to
switch to the next data batch.

Results show the Event-Based E/PD is better than the original algorithm (higher final accuracy,
lower final loss value), and the Double-Event-Based E/PD can accelerate the training process, save up
to 67% training time compared to state-of-the-art algorithms and even result in better performance.

The chapter is organised as follows: after a brief introduction of the problem in Sec. 10.1. The
main contribution, i.e., the two event-based mechanisms, is described in Sec. 10.2. Sec.10.3 con-
tains the experimental setup, results and analysis on Google Cloud GPUs. The chapter ends with a
conclusion and perspectives for further work in Sec.10.4.

10.1 Introduction
On continuing to address the problem we mentioned in Chapter. 8, we first recall here the behaviour
of the E/PD controller. Up to our knowledge, E (Exponential)/PD (Proportional Derivative) control
[144] is the first adaptive learning rate algorithm which uses control theory to dynamically adapt the
learning rate during the learning process. It uses only current gradient as in SGD, but its learning
rate η is dynamically calculated based on the loss value. During the E phase, that corresponds to
the beginning of the training when the loss value is continuously decreasing, η (learning rate) is
increased each time step by a factor of two. Once the loss stops decreasing, the PD phase takes over
and, considering CNN as a dynamic system, computes the control input (i.e. η) based on the CNN’s
output (i.e. the loss value).

The E/PD is mainly compared with time-based learning rate algorithm in [144]. Actually E/PD
is also time-based, in the sense of a periodic computation of the control law regardless its utility. In
this chapter, we propose two event-based control strategies to reduce the time CNN spends learning
"inefficiently" from data, as well as an extensive evaluation. Moreover, while using event-based
mechanisms we should expect for a reduction in the use of resources [7, 36], without degrading
performances [88] and with stability and robustness guarantees [93]. Numerous Event-Based control
strategies in the literature are focusing on stability and performance guarantees. Most event-based PID
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controllers are based on level-crossing triggering of some measuring error (see for instance [6, 36])
or more generally rely on an event-function based on Lyapunov functions (see for instance [135, 93]).

The two introduced Event-Based control algorithms are: (i) Event-Based Learning Rate control,
which will be implemented to prevent sudden drop of the learning rate when the model is approaching
the optimum; (ii) Event-Based Learning Epochs control, which will decide based on the learning
speed when to switch to the next data batch. First Event-Based control is implemented during the
PD phase of E/PD, it prevent the update of the learning rate if loss value decreases. In the original
continual learning setting, we set in advance a fixed number of training epochs for each data batch, but
results with E/PD control clearly show that the performance improvements are very limited towards
the end of training epochs for each batch data. We should therefore stop the "inefficient" learning and
pass to the next data batch. The second Event-Based control proposed is that it inspects the record of
loss values, and decides when to finish the learning for current data batch.

Our algorithm is evaluated on two classical machine learning image datasets CIFAR-10 and
CIFAR-100 [76]. Here we replace the dataset Fashion-MNIST that we used in the last chapter by
dataset CIFAR-100, the reason is Fashion-MNIST dataset has only 10 classes grayscale images, while
CIFAR-100 has 100 classes of color images which makes it more complex. The results are compared
with four best state-of-the-art algorithms: Adam, Nadam, AMSGrad and AdaBound. Our results
show that the E/PD combined with the two introduced Event-Based control not only outperforms
original E/PD but also converges faster than any other state-of-the-art counterpart, which means that
we could either stop the training process much earlier (and still obtain same performance) or obtain
much better performance while using same training time.

10.2 Event-Based Control Laws
In [144], an E/PD control of the learning rate is proposed consisting of an increasing exponential
phase followed by a PD phase. However, if an increase of the performance can be achieved on both
the loss and the accuracy, the learning rate is progressively decreased by the E/PD control in the PD
phase, even though a larger value of learning rate would be more efficient in term of performance.
Since event-based PID have shown to be more efficient in terms of convergence [36], we propose
here to implement an event-based E/PD controller to control the learning rate. [144] also shows that
significant improvements in terms of accuracy and loss only occurred at the first epochs of training
each data batch, so after this stage there is no limited interest into continuing the learning on further
epochs. Therefore, we propose a second event-based control to adapt the data batch loading process.

10.2.1 Event-Based Learning Rate

The E/PD Control algorithm from [144] is schematically presented in Fig. 9.1 and detailed in Algo-
rithm. 1, where we suggest to look at a CNN training as a dynamical system with the learning rate
as controlled input and the loss as measurable output. Initial weights of the CNN are chosen either
randomly (e.g. uniform distribution or normal distribution) or by algorithms (e.g. Xavier initializa-
tion [51]). The initial learning rate η(0) is fixed. E/PD contains two phases: a phase where the
learning rate is multiplied by some factor at each step (it doubles in our case) while the loss value
is continuously decreasing and a PD phase where the learning rate is computed by a PD-control law
once the loss starts to increase. The E/PD learning rate strategy is defined as:

η(k+1) = 2η(k) (10.1)
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as long as L(k)< L(k−1) (E phase) and

η(k+1) = KP
L(k)
L(0)

−KD
L(k)−L(k−1)

L(0)
(10.2)

from the first instant k = k∗ when L(k∗)> L(k∗−1) to the end of learning process for the data batch
(i.e. the PD phase). For the sake of simplicity the loss values are normalized with respect to the initial
epoch loss value L(0). KP and KD are the proportional and derivative gain.

On top of the PD phase we consider the following event-based mechanism where instead of letting
the PD-Control compute the rate each time (which might be lowering the learning rate), we propose
to update the learning rate only if the loss value increases during the PD-Control phase.

Let us define the event function e1 : R+→{0,1} by:

e1k =

{
1 if L(k)−L(k−1)> 0
0 otherwise (10.3)

The proposed PD event-triggered control output η(k+1) at time k+1 is then:

η(k+1) =

 KP
L(k)
L(0)

−KD
L(k)−L(k−1)

L(0)
if e1k = 1

η(k) otherwise
(10.4)

where η(k+1) is the calculated learning rate for epoch k+1, and L(k) is the corresponding loss for
epoch k.

Note that the convergence of CNN training is ensured by E/PD, and the convergence analysis
of E/PD is discussed in Chapter 9.4.2. The proposed event-based control does not introduce any
instability because if e1 = 0, it means the loss is decreasing, thus the model is converging, and if
e1 = 1, the learning rate strategy returns to E/PD.

10.2.2 Event-Based Learning Epochs
Controller Design As observed in [144], significant improvement in the learning only occurs at
the beginning when loading a new batch, the accuracy and loss value evolve slowly afterwards. This
motivates the use of an event-based strategy on the loss value record.

Consider a maximum of N possible training epochs within each batch, the user being totally free
in choosing this value. Let Xk vector contain the latest m epochs and Yk vector contain the m latest
corresponding normalized loss values:

Xk =
[
k−m · · · k−2 k−1 k

]
Yk =

[
L(k−m)

L(0) · · · L(k−2)
L(0)

L(k−1)
L(0)

L(k)
L(0)

]
where k ∈ [1,N−1]. One can use least squares estimation to fit a regression line with Xk and Yk:

Yk = αkXk +βk (10.5)

The purpose of this is that if the training process goes well the loss value should always decrease,
therefore αk should always be negative. Even with the presence of loss variations during the training,
as long as the decreasing trend doesn’t change, αk should still be negative. Nevertheless, in the
moment the loss trend becomes flat or even is increasing, αk will become 0 or positive.
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We define the event mechanism by the event function e2 : R+→{0,1} by:

e2k =

{
call new batch if αk>αthld or k = N

remain on same batch if αk ≤ αthld and k < N (10.6)

which enables to switch to new data batch when the learning speed is too low, i.e. the training is not
efficient anymore.

The threshold αthld can be adjusted in order to control the efficiency of learning. This thresh-
old should never be positive as an increasing curve of the loss value is not desirable. With enough
computing resources and no time constraints, the threshold can be set close to 0, and the training will
continue even though it makes very small improvements. Nevertheless, for continual learning the time
interval between two data batches can be short compared to the training time and we could encounter
the scenario when before we finish the current training epochs the next data batch is already available.
In this case, cutting off some useless training can be very useful. Therefore αthld should also be cho-
sen depending on the frequency of batch arrival. The choice of m is based on the constraints imposed
by the CNN (or the application using CNN). A large value of m would imply a long time of inactivity
as the controller would react only after m epochs (consecutive tests). A small value of m would imply
that the algorithm is very sensitive to each epoch thus if m = 0 the event based algorithm becomes a
time based one.

Continual Learning Scenario Recall the continual learning scenario defined in Sec. 8.2,the differ-
ence for this Event-Based Learning Epochs controller is that the training epochs for each batch could
be varied but no larger than N. So here we could cyclically learn the data batches until it reaches the
total epochs limit. Nevertheless we can see that the total training epochs are the same for both sce-
nario for all the experiments of the same dataset. The continual learning arrangement for Event-Based
Learning Epochs is illustrated in Fig. 10.1.

Figure 10.1 – Event-Based Learning Epochs Continual Learning Scenario. B is the number of data
batches, N is the maximum training epochs per batch.

10.3 Experimental Evaluation

10.3.1 Experimental Setup
The experiments are implemented on two state of the art machine learning datasets: 1) CIFAR-10
(a natural image data set with 10 categories) and 2) CIFAR-100 (a natural image data set with 100
categories) [76] with 3 different initial learning rate. The characteristics of the two data-sets are given



95

in Tab. 10.1. As the CIFAR-100 dataset has more classes, we use a deeper CNN: ResNet [63] than the
one used for CIFAR-10 VGG [122]. Due to the computational resource limitation, for ResNet with
CIFAR-100, we train 30 epochs per data batch instead of 60 for CIFAR-10.

Table 10.1 – Experiments configuration

Use case CIFAR-10 CIFAR-100

#data instances to train T 50,000 50,000
#data instances to test V 10,000 10,000
#classes C 10 100
data batch size S 10000 10000
total batches B 5 5
#trainng epochs per batch N 60 30
mini-batch size in one epoch 128 128
#CNN layers 28 15
#CNN parameters 1,641,858 422,538

All the experiments are implemented with Keras [26] and are carried out on Google Cloud Compute-
Engine using 8 virtual CPU with 30 GB memory and one P100 GPU. Each experiment is repeated
5 times. The parameters αthld and m are selected through a process of cross validation on a sub-
set of CIFAR-10. As a small value for m leads to high sensitivity and a large m slows down the
detection of the situation, we predefined a reasonable list of choice m ∈ [4;5;6;7;8]. Due to sim-
ilar consideration of sensibility, we also predefined a list for the learning rate threshold αthld ∈
[−0.1;−0.01;−0.001;−0.0001]. Each possible pair from these two lists is tested, a good compromise
between reactivity and noise sensitivity was found for m = 4 and αthld =−0.001.

10.3.2 Evaluation Metrics
The final loss and final validation accuracy (hereinafter referred to as FVA) reveal the performance
of the final model. Nevertheless, stability metrics are also important: if accuracy curve experiences
a big variance near the end of training process, even we could have a good final result, we could
not assure that we always get this result. Thus, in our evaluation, we include standard deviation of
the accuracy of the last 10% training epochs [95] (hereinafter referred to as FASD (Final Accuracy
Standard Deviation)). Convergence speed of accuracy is another metric to evaluate the performance,
as we focus on online learning scenario, the interval between two batch data can be short. With a
limited time, a faster accuracy convergence could lead to a better model performance comparing to
other algorithms. Therefore, we report the first epoch when the experiment reaches the 95% of best
final accuracy among all the experiments. All the metrics above are the same used in Chapter. 9.

10.3.3 Evaluation of Event-Based E/PD
Event-Based E/PD (hereinafter referred to as EB E/PD) refers to the E/PD control combined with
Event-Based Learning Rate control introduced in Sec. 10.2.1. To clearly show the effect of proposed
algorithm, we implement the on-line training experiments with E/PD and EB E/PD on CIFAR-10
for different initial learning rate. From Fig. 10.2 we can first see the comparison between EB E/PD
and original E/PD. For the first 60 epochs, we can see that EB E/PD is more stable than E/PD, then
their curves are quite overlapped. The averaged comparison results are showed in Tab. 10.2. As a
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conclusion EB E/PD performs better than E/PD in almost all metrics for all initial learning rate group.
Even though EB E/PD has a higher FASD under 0.01 and 0.05 initial learning rate, the minimum value
of FVA(±FASD) range of EB E/PD is higher than the maximum value of the range of E/PD. For final
accuracy standard deviation, comparing to their final accuracy, these standard deviations are very
small.

Table 10.2 – Experiments with varying initial learning rate η(0) on CIFAR-10. Mean value over 5
runs are reported.

Algorithm η(0) Final loss FVA1 (±
FASD2) (%)

1st epoch to
81.66%3

E/PD 0.002 0.58 83.17(±0.08) 124/300
EB E/PD 0.002 0.56 83.81(±0.03) 93/300

E/PD 0.01 0.55 84.35(±0.07) 88/300
EB E/PD 0.01 0.54 84.91(±0.10) 75/300

E/PD 0.05 0.56 85.06(±0.12) 73/300
EB E/PD 0.05 0.50 85.96(±0.26) 63/300
1. FVA: Final Validation Accuracy
2. FASD: Final Accuracy Standard Deviation
3. 81.66%: 85.96%(best final accuracy among all the experiments)×95%

For the sake of visibility, we zoom into the 60th to 90th training epochs from our two experiment
runs and show the evolution of the loss value and learning rate in Fig. 10.3. According to the learning
rate curve, we know that E phase ends at 62th epoch for E/PD-Control curve, and at 64th epoch for EB
E/PD. E/PD-Control curve clearly shows the problem we mentioned above, we can observe that from
62th epoch, the loss of E/PD is continuously decreasing until 70th epoch, and its learning rate is also
decreasing during this period. If the learning rate could stay constant during these 9 epochs, its loss
would decrease sharply and that would improve the convergence speed. In contrast, EB E/PD keeps
the learning rate when the loss continuously decreases which helps to accelerate the convergence. We
can also notice that with the drop of the loss, each time when we update the learning rate for EB
E/PD, its trend is also decreasing which will guarantee the stability of EB E/PD near the optimum.

10.3.4 Evaluation of Double-Event-Based E/PD
Double-Event-Based E/PD-Control (hereinafter referred to as D-EB E/PD) refers to the E/PD control
combined with Event-Based Learning Rate control (Sec. 10.2.1) and Event-Based Learning Epochs
control (Sec. 10.2.2). To ensure the need of the Event-Based Learning Rate control, we implemented
E/PD with only Event-Based Learning Epochs control (called E/PD Threshold); results showed that
Double Event-Based E/PD always has a better performance in Final loss and FVA. The results are
showed in Tab. 10.3. The results are as expected, Double Event-Based E/PD always has a better
performance in Final loss and FVA. As the learning epochs for CIFAR-100 are limited, the difference
between Double Event-Based E/PD and E/PD Threshold are bigger than the one on CIFAR-10. One
thing to notice is the FASD of CIFAR-100 under 0.05 initial learning rate. Double Event-Based
E/PD control is slightly higher than E/PD Threshold, which can be explained as the Event-Based
Learning Rate forces E/PD to maintain a bigger learning rate than it should be at a right time, that
could accelerate the convergence, but will slightly introduce some oscillations when e1k turns from 0
to 1.
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(a) Loss value (b) Accuracy

Figure 10.2 – E/PD and EB E/PD performance comparison on CIFAR-10 with η(0) = 0.01 initial
learning rate. Compact view of the results in Tab. 10.4.

(a) Loss value (b) Learning rate

Figure 10.3 – Performances of E/PD and EB E/PD on CIFAR-10

Table 10.3 – Experiments with varying initial learning rate η(0) on CIFAR-10 and CIFAR-100. Mean
value over 3 runs are reported

Dataset Algorithm η(0) Final loss FVA (±FASD) (%)

CIFAR10 Double-EB E/PD 0.002 0.46 84.63(±0.52)
CIFAR10 E/PD Threshold 0.002 0.66 83.43(±2.93)

CIFAR10 Double-EB E/PD 0.01 0.60 84.15(±1.18)
CIFAR10 E/PD Threshold 0.01 0.64 84.11(±1.57)

CIFAR10 Double-EB E/PD 0.05 0.59 84.05(±3.02)
CIFAR10 E/PD Threshold 0.05 0.64 83.31(±3.36)

CIFAR100 Double-EB E/PD 0.002 2.53 45.84(±1.80)
CIFAR100 E/PD Threshold 0.002 2.55 45.32(±1.85)

CIFAR100 Double-EB E/PD 0.01 2.40 49.11(±3.44)
CIFAR100 E/PD Threshold 0.01 2.47 45.54(±4.79)

CIFAR100 Double-EB E/PD 0.05 2.37 49.91(±10.04)
CIFAR100 E/PD Threshold 0.05 2.45 45.86(±9.74)
* FVA: Final Validation Accuracy
* FASD: Final Accuracy Standard Deviation
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D-EB E/PD-Control has been tested on CIFAR-10 and CIFAR-100 and compared with 4 best
state-of-the-art adaptive optimization algorithms: Adam, Nadam, AMSGrad and AdaBound. For
these 4 learning rate strategies, except varying initial learning rate, all the other parameters remain
as default as they mentioned in their paper or coded in Keras. As we adopt Event-Based Learning
Epochs control into D-EB E/PD, the training epochs for each data batch is not fixed, we may also
iterate each data batch several times. Therefore, we will not only report the results at the end of whole
training process, but also the results after first round training (i.e. the training process iterates, for the
first time, all the data batches, as explained above in Fig. 10.1).

(a) Loss value

(b) Accuracy

Figure 10.4 – Performance comparison on CIFAR-10 with η(0) = 0.01 initial learning rate. Compact
view of the results in Tab. 10.4.

Experimental results on CIFAR-10 are showed in Fig. 10.4, all the curves are generated with the
same initial learning rate 0.01. Between 25th and 60th epoch, D-EB E/PD largely outperforms all
the counterparts. For the 4 state-of-the-art algorithms, they follow the rule of 60 training epochs per
batch, and for our D-EB E/PD algorithm, its learning epochs per batch are dynamic. The vertical line
with arrow at 104th epoch indicates that our D-EB E/PD algorithm has finished its first round learning
of the whole 5 batches after this epoch. Fig. 10.4 clearly shows that at this epoch, our algorithm is
reaching a lower loss value and a higher accuracy comparing to other four curves. There are two
reasons that we can achieve this performance: (i) EB E/PD converges very fast, (ii) during these
epochs, our D-EB E/PD algorithm have been trained with later batches data, while other 4 algorithms
are still working on the first batch data. We can thus conclude that diversity of training data helps to
reach better performance.
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Results on CIFAR-10 are reported in Table. 10.4, for all algorithms under different initial learning
rates. D-EB E/PD reaches a higher final accuracy and lower final loss no matter η(0). Even though
D-EB E/PD has a higher FASD than AdaBound with η(0) = 0.01 and η(0) = 0.05, the FVA(±FASD)
range of D-EB E/PD is always higher than the range of AdaBound. Additionally it only takes about
32 to 38 epochs to reach 95% best accuracy in any group. All the indicators are very stable across
different groups for D-EB E/PD. One can also note that all 4 state-of-the-art algorithmsl perform very
bad with η(0) = 0.05, as they cannot even reach the 95% best accuracy.

CIFAR-100 results are showed in Fig. 10.5 and reported in Tab. 10.5. According to the FVA,
we know that all the algorithms did not totally converge in the end of training process, but that does
not influence our conclusion of analysis. D-EB E/PD outperforms other algorithms in almost all the
metrics. As the algorithms are not totally converged, the trend of accuracy curve is still increasing,
therefore, the higher the initial learning rate, the faster the 1st epoch to reach 95% best accuracy.

(a) Loss value

(b) Accuracy

Figure 10.5 – Performance comparison on CIFAR-100 with η(0) = 0.01 initial learning rate. Com-
pact view of the results in Tab. 10.5.

Tab. 10.6 shows the results of D-EB E/PD at the end of learning after the first round. It is very im-
portant to notice that all the final loss after first round learning in this table is lower than all the state-of-
the-art algorithms at the end of their whole training process. Except in CIFAR-100 for η(0) = 0.002,
all the FVA after first round exceed the 95% best accuracy in Tab. 10.4 and Tab. 10.5, respectively.
As the learning process on CIFAR-100 is not totally converged (trend can be observed in Fig. 10.5),
we can notice that the ending epoch of their first round is near the end of whole training process,
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our event-based control did not cut off many epochs. For CIFAR-10, event-based control helps to
massively cut off around 62% to 67% training epochs meanwhile guarantee a very good result.

Table 10.4 – Double-Event-Based E/PD algorithm experiments with varying initial learning rate η(0)
on CIFAR-10. Mean value over 5 runs are reported.

Algorithm η(0) Final loss FVA ±FASD(%) 1st epoch to 80.94%1

D-EB E/PD 0.002 0.58 84.50(±0.59) 38/300
Adam 0.002 0.73 84.14(±1.34) 64/300
Nadam 0.002 0.71 83.29(±1.11) 66/300
AMSGrad 0.002 0.67 84.21(±1.65) 65/300
AdaBound 0.002 0.81 84.31(±0.96) 75/300

D-EB E/PD 0.01 0.61 84.83(±1.29) 37/300
Adam 0.01 0.79 83.98(±1.58) 64/300
Nadam 0.01 0.75 84.15(±1.29) 65/300
AMSGrad 0.01 0.65 84.21(±1.50) 72/300
AdaBound 0.01 0.84 79.22(±1.21) -

D-EB E/PD 0.05 0.60 85.20(±3.14) 32/300
Adam 0.05 5.98 48.93(±14.06) -
Nadam 0.05 7.74 42.27(±13.95) -
AMSGrad 0.05 2.69 59.74(±12.43) -
AdaBound 0.05 1.03 71.49(±1.65) -
* FVA: Final Validation Accuracy
* FASD: Final Accuracy Standard Deviation
1. 80.94%: 85.20%(best final accuracy among all the experiments)×95%

Table 10.5 – Double-Event-Based E/PD algorithm experiments with varying initial learning rate η(0)
on CIFAR-100. Mean value over 5 runs are reported

Algorithm η(0) Final loss FVA (±FASD) (%) 1st epoch to 46.56%1

D-EB E/PD 0.002 2.59 45.69(±1.94) -
Adam 0.002 3.40 31.29(±3.23) -
Nadam 0.002 3.18 35.66(±3.35) -
AMSGrad 0.002 3.13 35.38(±4.02) -
AdaBound 0.002 3.29 39.87(±4.42) -

D-EB E/PD 0.01 2.41 48.14(±3.34) 111/150
Adam 0.01 4.94 8.11(±2.04) -
Nadam 0.01 4.55 9.70(±2.32) -
AMSGrad 0.01 4.79 8.16(±0.50) -
AdaBound 0.01 3.51 30.98(±3.08) -

D-EB E/PD 0.05 2.38 49.01(±10.52) 100/150
Adam 0.05 4.72 2.64(±0.58) -
Nadam 0.05 4.74 1.88(±0.79) -
AMSGrad 0.05 4.68 1.98(±0.56) -
AdaBound 0.05 3.69 19.03(±2.42) -
* FVA: Final Validation Accuracy
* FASD: Final Accuracy Standard Deviation
1. 46.56%: 49.01%(best final accuracy among all the experiments)×95%
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Table 10.6 – Double Event-Based E/PD experiments on CIFAR-10 and CIFAR-100 in the End of First
Round. Mean value over 5 runs are reported.

Dataset η(0) EE of FR1 FL after FR2 FVA after FR3 (%)

CIFAR10 0.002 99/300 0.60 82.47
CIFAR10 0.01 104/300 0.62 82.36
CIFAR10 0.05 113/300 0.62 82.75

CIFAR100 0.002 148/150 2.61 44.98
CIFAR100 0.01 148/150 2.44 48.04
CIFAR100 0.05 146/150 2.41 48.95
1. EE of FR: End Epoch of First Round
2. FL after FR: Final loss after First Round
3. FVA after FR: Final Validation Accuracy after First Round

10.3.5 Trade-offs and limitations
The addition of event-based mechanisms improves the performance in terms of final accuracy and
loss, however at the cost of two sacrifices:

• (i) Event-Based Learning Epochs accelerate the speed of learning each data batch, however, if
we are not allowed to keep in cache any data batch locally, i.e. only allowed to learn each data
batch once, the performance of Double Event-Based E/PD after first round is slightly worse
than the performance after all the training epochs.

• (ii) Double Event-Based E/PD will cyclically learn all data batches, and it will need to load and
unload data batch more times than classical on-line learning setting. Loading (unloading) data
into (from) memory needs time. These are extra costs for Double Event-Based E/PD, however
negligible compared to the computing intensity of CNNs.

Regarding the limitation of the presented D-EB E/PD, we identified one potential case for which our
algorithm will fail: if the training data contains mislabeled data. These data will lead the model to
converge to a wrong optimum, and as the algorithm minimizes faster the loss function, it will be
over-fitting to the noisy data faster than other algorithms. However, this fail is caused by poor data
selection, and is not specific to our algorithm.

In order to continue this work in the following part of the manuscript, we will try some mecha-
nisms for dealing with mislabelled data during the training phase of a CNN.

10.4 Conclusion and Future Work
Due to the limitation of computing resource or short interval time between two data batches, conver-
gence speed of the loss and accuracy becomes especially important for on-line learning. E/PD control
is a powerful learning rate algorithm when training neural network on an on-line learning scenario.
Based on E/PD, this paper proposes two algorithms: (i) Event-Based Learning Rate algorithm and (ii)
Event-Based Learning Epochs algorithm.

The new algorithm firstly introduces an Event-Based control on PD phase of E/PD, in order to
prevent the learning rate to decrease too much. Second Event-Based control is implemented to inspect
the record of the loss value. If the loss record has the tendency to increase, showing little learning
efficiency, we will drop the rest learning epochs for current data batch.
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Results show that Double-Event-Based E/PD can massively cut off training epochs, and even
results in a lower loss value. For instance with CIFAR-10 dataset, it could save up to 67% training
epochs.

As the Event-Based Learning Epochs control is independent from learning rate algorithm and
dataset, this work could be further extended by implementing this control with language, image and
numeric datasets on time-based decay SGD, Adam, Nadam, AMSGrad and AdaBound learning rate
algorithms, to prove that by simply adding this event-based control, all the learning rate algorithms
on any dataset can improve their performance on on-line learning scenario.



Chapter 11

Conclusion on Learning Rate Control

This ending chapter of Part. III highlights this thesis contributions with regards to the dynamic control
of Learning Rate in a learning algorithm.

Image classification is the task of classifying an image into a class category. It is the most
well-known computer vision task. Convolutional Neural Network (CNN) has become the most used
method for image classification tasks. CNN’s usage is not limited for computer vision area, the last
proposed algorithm Temporal Convolutional Network (TCN) [82] is the new trend for time series
predictions, and the time series study is also a rapidly evolving field in econometrics. During the
training of CNN, the learning rate and the gradient are two key factors to tune for influencing the
convergence speed of the model. Usual learning rate strategies are time-based i.e. monotonous decay
over time. But recent state-of-the-art techniques focus on adaptive gradient algorithms i.e. Adam and
its versions. The disadvantage of time-based algorithms is that the learning rate path is fixed before
training, it cannot be adjusted when necessary. The shortcomings of adaptive gradient algorithms are
that adaptive gradient methods do not generalize as well as SGD, these methods tend to perform well
in the initial portion of training but are outperformed by SGD at later stages of training. As we con-
sider a continual learning scenario, neither the time-based learning rate algorithms nor the adaptive
gradients methods considers the variation between the data batches. For instance the face recognition
task, the distribution of race and sex of one data batch can be largely different from another data
batch. Apparently time-based algorithms can not response to these problems, and as Adam, Nadam
and AMSGrad all use the decayding averages of past gradients, therefore the calculated gradient can
not show the strong reflection from the new data batch.

To cope with the above challenges, we advocate switching to a performance-based adaptation, in
order to improve the learning efficiency. We present E (Exponential)/PD (Proportional derivative)-
Control, a learning rate strategy that combines a feedback PD controller based on the CNN loss
function, with an exponential control signal to smartly boost the learning and adapt the PD parameters.
We compare the E/PD results with time-based algorithms, E/PD can not only result in a higher final
accuracy, but also a more stable learning curve.

To continue improving E/PD under continual learning scenario, Event-Based Learning Rate al-
gorithm is introduced on the PD phase, to prevent the learning rate to decrease during this period.
Results show the Event-Based E/PD performs better than the E/PD in all the metrics.

Observing that the Event-Based E/PD sharply increased the converging speed for each data batch,
we conclude that the fixed batch size does not seem appropriate any more as we should cut off the
inefficient training when there is no obvious improvement. Under such circumstances, an Event-
Based Learning Epochs algorithm is also proposed to inspect the record of the loss value. If the loss
record has the tendency to increase, showing little learning efficiency, we suggest to drop the rest
learning epochs for the current data batch. Results show that incorporate two event-based control
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with E/PD (Double-Event-Based E/PD) can massively cut off training epochs and even result in a
lower loss value. For instance with CIFAR-10 dataset, it could save up to 67% training epochs.

Though Double-Event-Based E/PD can reach to higher final accuracy, it does not come without a
cost, as we allow the algorithm to decide when to pass to next batch, it will therefore load (unload)
more frequently into (from) memory than the case of fixed training epochs. However if the data batch
size is big, that will also add training time.

Regarding the perspectives, we see a potential capacity to incorporate Event-Based Learning Rate
and E/PD into adaptive gradient methods. From Sec. 8.4, we can see that Adam and its extensions all
focus on modifying the calculation of gradients, its step size η is either fixed or time-based decay. If
the merged algorithm can leverage the advantages from two parts, it may outperform either of them.

As the Event-Based Learning Epochs control is independent from learning rate algorithm and
dataset, it could be further implemented with language, image and numeric datasets on time-based
decay SGD, Adam, Nadam, AMSGrad and AdaBound learning rate algorithms, to prove that by
simply adding this event-based control, all the learning rate algorithms on any dataset can improve
their performance on continual learning scenario.

Recall the limitations we mentioned in Chapter 10.3.5, once the training data contains the misla-
belled data, our proposed learning rate algorithm will actually accelerate the over-fitting on the wrong
data. To address this problem, we introduce further studies in the next part.



Part IV

On-line Learning from Highly Unreliable
Data: Anomaly Detection
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The third area of contribution of this thesis is on learning models from dirty label data. When
we do system identification (in control engineering) or machine learning (in computer science), the
common assumption is that the data source is clean, i.e., features and labels are correctly set. However,
data collected from the wild can be unreliable due to careless annotations (e.g. user uploaded image
with random hashtags on Facebook or Instagram) or malicious data transformation (e.g. cyber attack
of the auto-labelling system). Therefore, in this part, we propose new algorithms to train models from
highly unreliable data. To show the utility of our algorithms, we applied the developed algorithms on
three use cases in anomaly detection area.

Chapter. 12 introduces the background of noisy data learning and anomaly detection. It presents
the three use cases that we have used to test our algorithms. The continual learning setting is also
detailed in this chapter. Finally, three state of the art algorithms which we will compare with are
explained.

Chapter. 13 presents our first algorithm: RAD, which is a two-layer on-line data selection frame-
work for robust anomaly detection (RAD). The first layer is to filter out the suspicious data, and the
second layer detects the anomaly patterns from the remaining data. The motivations behind this study
are firstly illustrated, then experiments on IoT and Cluster use cases are implemented. Results show
that our algorithm can resist the influence of noisy label data on training process. Limitations of the
RAD algorithm are discussed in the end.

Chapter. 14 responds the highlighted limitations in the end of Chapter. 13. We extend RAD with
additional features of conflicting opinions of classifiers, repetitively cleaning, and oracle knowledge,
namely RAD Voting and RAD Active Learning. They massively improve the RAD on IoT and Cluster
use cases. Additionally, we extend RAD Active Learning as RAD Slim to deal with image dataset,
and evaluate the algorithm on a face recognition use case. RAD Active Learning and RAD Slim
need to consult the uncertain data to an expert/oracle, but in reality we could not have unlimited
consultations to the expert, so we proposed two variations RAD Active Learning Limited and RAD
Slim Limited, which impose limit on the number of consultation per batch. Due to this limitation,
we propose also two additional strategies: Highest Disagreement method and Highest Loss method
to rank the uncertainty of data in RAD Active Learning Limited and RAD Slim Limited.

Chapter. 15 summarizes the contributions in perspective to the noisy label data learning. The
limitations are drawn and ideas for future works are proposed.





Chapter 12

Noisy Data Learning and Anomaly
Detection: Background and Related Works

Classification algorithms have been widely adopted to detect anomalies for various systems, under the
common assumption that the data source is clean, i.e., features and labels are correctly set. However,
data collected from the wild can be unreliable due to careless annotations or malicious data trans-
formation for incorrect anomaly detection, It is always challenging to learn from noisy labels, since
these labels are systematically corrupted. As a negative effect, noisy labels inevitably degenerate the
accuracy of classifiers. This negative effect becomes more prominent for continual learning (which is
still the experiment setting we use in this Part) scenario and deep neural network, since influence of
noisy data can be left in the models.

In this chapter, we firstly introduce the notion of noisy data learning, and the core challenges in
Sec. 12.1. Then we present three datasets which we will use in the following chapters to evaluate our
proposed algorithms againt state of the art algorithms.

12.1 Introduction of Anomaly Detection and Noisy Data
Learning

Machine learning has been extensively used for failure detection [107, 106, 114, 21], attack predic-
tion [1, 9, 3, 75, 71, 147], and face recognition [128, 120, 137]. Considering noisy data in classi-
fication algorithms is also a problem that has been explored in the machine learning community as
discussed in [44, 14, 101]. In general, when we talk about noisy data, it could be two kind of noise
on data: (1) the features captured can be incorrect or (2) the labels collected can be corrupted. All
over the context of this thesis, we specifically refer to the latter situation. Fig. 12.1 shows an example
of that latter case. Standard machine learning algorithms typically assume clean labels and overlook
the risk of noisy labels. Recent studies point out the increasing dirty data attacks that can maliciously
alter the anomaly labels to mislead the machine learning models [70, 41, 64]. To handle such noisy
labels, recent approaches fall in three main categories:

• One direction focuses on training only on selected samples, which leverages the sample-selection
bias [65] to overcome the label noise issue. The representative works are MentorNet [68], De-
coupling [92] and Co-teaching [59].

• Second direction develops regularization methods, including explicit and implicit regulariza-
tions. They implement the regularization bias to overcome the label noise issue. Explicit reg-
ularization is added to the objective function, such as manifold regularization [11] and virtual
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Figure 12.1 – Noisy Label Data: Incorrectly Label a Tiger as Cat

adversarial training [98] . Implicit regularization is designed for training algorithms, such as
temporal ensembling [79] and mean teacher [130]. Nevertheless, both approaches introduce
a permanent regularization bias, and the learned classier barely reaches the optimal perfor-
mance [31].

• The last direction estimates the noise transition matrix without introducing sample-selection
bias and regularization bias. As an approximation of corruption of the real world, noisy labels
are theoretically flipped out of the ground-truth labels by an unknown noise transition matrix.
In this way, the accuracy of classifiers can be improved by estimating this matrix accurately.
The previous methods for estimating the noise transition matrix can be roughly summarized
into two solutions:

– (i) One solution is to estimate the transition matrix before training the model, and subse-
quently use this transition matrix to correct loss function [104].

– (ii) Another is to estimate the transition matrix during the training process. For instance,
adding a constrained linear “noise” layer on top of the softmax layer which adapts the
softmax output to match the noise distribution [126], or adds a nonlinear softmax [52].

The problem for this last solution is that data is finite, training epochs are finite, there exists the
uncertainty how long will the algorithm take to well estimate the transition matrix.

12.2 Anomaly Detection Datasets
In Part. IV, all our experiments will be examined on following three datasets. They represent three
types of anomaly detection jobs: (1) failure detections, (2) attacks predictions and (3) face recogni-
tions. First two datasets are tabular data, the third one is image data, the reason we choose these three
datasets is because under these three situations, mislabelled data can cause serious problems. We did
not use an economic dataset since we did not find one complying with our use case. Noisy label can
also hurt the analysis result of economic problem, but since most of the economic dataset (especially
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macroeconomic dataset) are published by government or international organisations, the possibility
that the data containing noisy label is relative low.

Google Cluster Tasks Failure Dataset The cluster task traces comprise data instances each corre-
sponding to a task with 27 features capturing information related to static and dynamic system states,
e.g. the task start/end times, the task resource utilisations, the hosting machine, etc. Each class is
labeled based on its scheduling state. A detailed description of the features and labels can be found
in [112]. In particular, we are interested in the four possible termination classes: finish, fail, evict,
or kill. We filter out other classes. The resulting class distribution is dominated by successful tasks
(finish) 77.8%, followed by kill 22.0%, fail 0.2%, and evict <0.1%. Similar to [117], we aim to pre-
dict the task outcome to reduce the resource waste and improve the overall scheduling and system
performance, e.g., in case of lack of resources and need to kill a task, help choosing the task with the
least probability to succeed.

IoT Thermostat Device Attacks Dataset The IoT dataset comprises data instances collected from
thermostat device describing 23 network packet-level statistics recursively computed over five differ-
ent time scales totalling to 115 features. This traffic statistics are collected during normal operation,
labeled as benign, or under one of ten different malicious attacks stemming from devices infected by
either the BASHLITE or Mirai malware. Malicious traffic covers mainly scanning for vulnerable de-
vices and various flooding attacks. More details are provided in [94]. We aim to apply RAD to build
a noise-resistant model to categorize the attacks for post fact analysis, e.g., for threat assessment.

Celebrities Face Recognition Dataset The FaceScrub [103] dataset is used for face recognition.
Original FaceScrub contains more than 100,000 face images of 530 people, with about 200 images
per person. Male and Female images are almost equal. We use a subset of 12K FaceScrub images to
fit the limits of our compute resources. The 12K images cover the 100 people which have the highest
number of images, 55 males and 45 females. FaceScrub images were retrieved from the Internet and
are taken under real-world situations (uncontrolled conditions). We resize all images to 64*64 pixels.
While name is the only annotation we use. The face recognition system has been widely used in
security equipment.

Cluster and IoT datasets will be used in Chapter. 13 and Chapter. 14. Face recognition dataset will
only be used in Chapter. 14.

12.3 Continual Learning
In this part of thesis, we are still in the continual learning scenario designed in Sec. 8.2. First of all,
as we are training the models with noisy data, we will not directly use the whole data batch, the data
will pass a selection process to steam the noisy data out. Secondly, it also depends on the datasets we
use.

Continual Learning for IoT and Cluster Dataset The main difference comparing to the continual
learning setting in. 8.2 is that for IoT and Cluster datasets, we will not only use the data from current
data batch, but also from all the previous data batches. Imagine D∗i is the selected data from ith data
batch Di, then to train the models, we will use D∗1 . . .D

∗
i.

Continual Learning for FaceScrub Dataset For FaceScrub dataset, the continual learning design
is the same as in Sec. 8.2. The reason that we do not use whole accumulated data to the model is
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due to the computation overhead. Because of the complex characteristics of image data, if we use all
accumulated data, that will increase a lot of computation to train the convolutional neural network.
Facescrub data will thus use only D∗i at batch i, where D∗i is the selected data from ith data batch Di.

12.4 Related Works
We select three state of the art algorithms as the comparisons to our proposed algorithms. They are:
(i) IDS (Intrusion Detection System) [1], (ii) Forward [104] and (iii) Co-Teaching [59].

• IDS (Intrusion Detection System) is a machine-learning based pre-trained model, it is de-
signed to detect the existence of flooding DoS attacks with a high accuracy (precision) and
detection rate (recall). As the IDS will not update during the anomaly detection process, the
success of IDS are highly related to the choice of model and the size of available clean dataset.
As we are working on continual learning setting, in order to have fair comparison with our
algorithm, we need to adapt IDS to the on-line learning scenario. We use IDS as a protection
shell, and we train a separate classification model. During the continual learning, every time
when there is a new data batch, we use IDS to filter out noisy data, and select the "clean" data.
The separate classification model will only use the "clean" data to update itself. The selection
process details will give in Chapter. 13.

• Forward estimates the noise transition matrix T before training the model, and subsequently
use this transition matrix for loss correction. The process is showed in Algorithm. 2. The
symbol l→ means the f orward correction as it multiplies the network predictions by T̂ .

Algorithm 2 Robust two-stage training
Input: the noisy training set S, any loss l
If T is unknown:

Train a network h(x) on S with l
Obtain an unlabeled sample X ′

Estimate T̂ by Eq. (12.1) and (12.2) on X ′

Train the network h(x) on S with l→

Output: return h(·)

p̂(y|x) is the softmax output, it can be interpreted as a vector approximating the class-conditional
probabilities. In supervised c-class classification, one has feature space X ∈ Rd and label
space Y = ei : i ∈ [c], where ei denotes the ith standard canonical vector in Rc by, i.e. ei ∈ 1,0c,
1T · et = 1.

x̄i = argmaxx∈X ′ p̂(ŷ = ei|x) (12.1)

T̂i j = p̂(ŷ = e j|x̄i) (12.2)

To summarize, Eq. (12.1) and Eq. (12.2) try to find a ’perfect example’ for each class, and the
prediction probability vector of this example will be used as the probability distribution vector
for this class, implementation details can be found in this git repository 14. the problem of this

14https://github.com/giorgiop/loss-correction
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method is that it depends on an already trained model. In the ideal case, the classifier should
be powerful enough to only make mistakes due to label noise, but in reality, if we have already
such a classifier, it would not be needed to train another model with noisy label data. Therefore
in general, the estimation of T̂ is not that accurate, which is a big disadvantage of forward loss
correction.

To speed up the model convergence for Forward, we implement the E (Exponential)/PD (Proportional-
Derivative)-Control [143] and Event-Based Control Learning rate [145] as learning rate sched-
ule based on SGD (stochastic gradient descent) optimizer.

• Co-Teaching is a deep learning paradigm for combating with noisy labels. Namely, we train
two deep neural networks simultaneously, and let them teach each other given every mini-batch:
firstly, each network feeds forward all data and selects some data of possibly clean labels;
secondly, two networks communicate with each other what data in this mini-batch should be
used for training; finally, each network back propagates the data selected by its peer network
and updates itself. The schema of data flow is showed in Fig. 12.2.

Figure 12.2 – Co-teaching maintains two networks (A & B) simultaneously. In each mini-batch
data, each network samples its small-loss instances as the useful knowledge, and teaches such useful
instances to its peer network for the further training. (Source: [59])

IDS, Forward and Co-Teaching will be used as comparisons in Sec. 13.4 and Sec. 14.4.





Chapter 13

Robust Anomaly Detection on Unreliable
Data

This chapter presents a two-layer learning framework for robust anomaly detection (RAD) in the
presence of unreliable anomaly labels. The first layer of quality model filters the suspicious data,
where the second layer of classification model detects the anomaly types. We specifically focus
on two use cases, (i) detecting 10 classes of IoT attacks (Sec.12.2) and (ii) predicting 4 classes of
task failures of big data jobs (Sec.12.2). We continuously learn from the incoming data streams and
cleanse the data. So as to adapt to the increasing learning capacity from the larger accumulated data
set (Sec. 12.3). Moreover, we propose an ensemble prediction strategy to reconcile the prediction
outcomes of two models, namely label quality model and anomaly classification model.

Sec. 13.2 describes the motivating case studies that we consider. Sec. 13.3 presents the proposed
RAD framework and Sec. 13.4 details the results of its experimental evaluation and the limitations of
RAD. Finally, Sec. 13.5 draws our conclusions and the lessons learned.

13.1 Introduction
Anomaly detection is one of the core operations for enforcing dependability and performance in mod-
ern distributed systems [140]. Anomalies can take various forms including erroneous data produced
by a corrupted IoT device or the failure of a job executed in a datacenter [16, 15].

Dealing with this issue has often been done in recent art by relying on machine learning-based
classification algorithms over system logs [42, 49]. These systems often rely on a learning dataset
from which the classifier learns to distinguish between data corresponding to a correct execution of
the system from data corresponding to an abnormal execution of the latter (i.e., anomaly detection).

In this context, a rising concern when applying classification algorithms is the accessibility to a
reliable ground truth for anomalies [24]. Typically, anomaly data is manually annotated by human
experts and hence the generation of anomaly labels is subject to quality variation, so-called noisy
labels. For instance, annotating service failure types for data centers is done by operators.

However, standard machine learning algorithms typically assume clean labels and overlook the
risk of noisy labels. Moreover, recent studies point out the increasing dirty data attacks that can
maliciously alter the anomaly labels to mislead the machine learning models [70, 41, 64]. As a result,
anomaly detection algorithms need to capture not only anomalies that are entangled with system
dynamics but also the unreliable nature of anomaly labels.

Indeed, a strong anomaly classification model can be learned by incorporating a larger amount
of datasets, however learning from data with noisy labels can significantly degrade the classification
accuracy, even for deep neural networks, at a non-negligible computation source [134]. Such a con-
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cern leads us to ask the following question: how to build an anomaly detection framework that can
robustly differentiate the true and noisy anomalies and efficiently learn the anomaly classification
models from a succinct amount of clean data. The immediate challenge of capturing the dynamics
of data quality lies at the fact that label qualities are not directly observable but only via anomaly
classification outcomes that in turn is coupled with the noise level of data labels.

In this chapter, we develop a Robust Anomaly Detector (RAD), a generic framework that con-
tinuously learns the anomaly classification model from streams of event logs that are subject to label
noises. To such an end, RAD is composed of two layers of learning models, i.e., data label model
and anomaly classifier. The label model mainly aims at differentiating the label quality, i.e., noisy v.s.
true labels, for each batch of new data and only "clean" data points are fed in the anomaly classifier.
The major job of anomaly classifier is to predict the coming-out event, that can be in multiple classes
of (non)anomalies, depending on the specific anomaly use case. Both the prediction from label model
and anomaly classifier contribute to the final decision of anomaly detection, using ensemble predic-
tion technique. The specific choices of label models and anomaly classifier include standard machine
learning models, e.g., random forest, Adaboost, and discriminant analysis, and deep neural networks.

To demonstrate the effectiveness of RAD, we consider two use cases, i.e., detecting 10 classes of
IoT attacks [94], and predicting four types of task failures for big data processing cluster [112, 116]
from open datasets. Our preliminary results show that RAD can effectively and continuously cleanse
the data, i.e., selecting data streams with clean labels, and result better anomaly detection accuracy per
additional data stream included, compared to classifiers without continuous data cleansing. Specifi-
cally, under 30% noise, RAD achieves up to 99.01% and 85.46% accuracy for detecting IoT device
attacks and predicting cluster task failures respectively.

13.2 Motivating case studies
To qualitatively demonstrate the impact of noisy data on anomaly detection, we use two case studies.

• Detecting IoT device attacks from inspecting network traffic data collected from commercial
IoT devices [94]. This dataset contains nine types of IoT devices which are subject to 10
types of attacks. Specifically, we focus on the Ecobee thermostat device that may be infected
by Mirai malware and BASHLITE malware. Here we focus on the scenario of detecting and
differentiating between 10 attacks. It is important to detect those attacks with high accuracies
against all load conditions and data qualities.

• Predicting task execution failures for big data jobs running at a Google cluster [112, 117].
This trace contains a month-long jobs execution record from Google clusters. Each job contains
multiple tasks, which can be terminated into four different states: finish, fail, evict, or kill. The
last three states are considered as anomaly states. To minimise the computational resource
waste due to anomaly states, it is imperative to predict the final execution state of task upon
their arrivals.

The details about data definition, and statistics, e.g., number of feature and number of data points,
can be found in Sec. 13.4.1. To recognize anomalies/faces in each use case, related studies have ap-
plied different machine learning classification algorithms, from simple ones, e.g., k-nearest neighbour
(KNN), to complex ones, e.g., deep neural networks (DNN), under scenarios with different levels of
label noise. Here, we evaluate how the detection accuracy changes relative to different levels of
noises. We focus on off-line scenarios where we split the data in a training set affected by label noise
and a clean evaluation set.
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Classification models are learned from 14,000 training records and evaluated on a clean testing
dataset of 6,000 records. We specifically apply KNN, nearest centroid and multilayer perceptron
(MLP) (a.k.a feed-forward deep neural networks) on both the IoT device attacks and the cluster task
failures. Fig. 13.1a and Fig. 13.1b summarize the accuracy results.

(a) Use case of IoT thermostat device attacks (b) Use case of Cluster task failures

Figure 13.1 – Impact of noisy data on anomaly classification

One can see that noisy labels clearly deteriorate the detection results for both IoT attacks and
task failures, across all three classification algorithms. For standard classifiers, like KNN and nearest
centroid, the detection accuracy decays faster than MLP that is more robust to the noisy labels. Such
an observation holds for both use cases. In IoT attacks, MLP can even achieve a similar accuracy as
the case of no label noises, when 50% of label classes are altered.

Above two experiments clearly show that under the presence of noisy label data, all the models
are corrupted. The stronger the noise, the worse the model’s accuracy. These cases motivate us to
design the RAD framework and its extension. To resist the influence of noisy label data on learning
process.

13.3 Design Principles of RAD Framework
In this section, we first introduce the general structure of RAD and its extended features with respect
to data selection and model prediction – ensemble prediction. All the symbols used to explain the
designs are summarized in Tab. 13.1.

13.3.1 System Model
We consider a dataset that consists of several data instances. Each data instance has f features. Each
data instance belongs to a class k, where k ∈K = {1, . . . ,K}. Data instances are pre-labeled dataset
D with labels Y used for training. Furthermore, a labeled data instance is either correctly labeled
(i.e., clean data instance), or incorrectly labeled (i.e., noisy data instance). We use the indicator
variable q̂ to indicate clean q̂ = 1 and dirty q̂ = 0 labels. Wrong labels can stem from several reasons
ranging from subjectivity, and data-entry errors, to malicious error injection. The quality of a dataset
D is measured as the percent of clean labeled data instances, denoted here as Q̃.

Data instances arrive at the learning system continuously over time in batches. Di denotes the
batch of labeled data arriving at time ti and having labels Yi. In general we denote the time win-
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Table 13.1 – Symbol description

Symbol Description

L label quality predictor
C anomaly detection classifier
Di ith training data batch
D∗i ith cleansed data batch from L
Pi ith test data batch
Ŷi prediction of ith test data batch from C
Q̃i percent of clean labeled data of ith batch
Ui "unclean" data of ith batch determined by L
U ∗

i ith cleansed data batch from C
Si "unclean" data of ith batch determined by C
S∗i data with true label from Expert of ith batch
p̂ indicator of prediction, 1 for clean, 0 for dirty
q̂ indicator of prediction, 1 for clean, 0 for dirty

dow with the subscript i. We assume that a small initial batch of data instances D0 has only clean
labels, that is Q̃0 = 100%. Subsequent batches, include varying proportions of noisy labels, i.e 0 <
Q̃i < 100%, i > 0. For simplicity we consider arriving batches of equal size, ∀Di, |Di| = N, but not
necessarily at regular times.

A classification request consists of a batch of non-labeled data instances Pi for which the classifier
predicts the class k of each data instance. At each batch arrival, the classification output Ŷi is thus an
array of the predicted classes for each non-labeled data instance.

13.3.2 Design Overview of RAD
We propose the RAD learning framework. Its objective is threefold:

(1) Accurately learn models from noisy data.

(2) Continuously update the learned models based on new incoming data.

(3) Propose a general approach that caters to different machine learning algorithms and different
application use cases.

RAD is composed of two key steps: training data selection and prediction techniques. Training
data selection part focus on how to filter out suspiciously noisy data and solicit "clean" data to train
the classification models subsequently. The prediction part combines different prediction models.

Fig. 13.2 describes the overall architecture of RAD training data selection. it consists of two main
components: a label quality model L mainly aims at discerning clean labels from dirty labels and
a classifier model C targets the specific classification task at hand. Both models will be used to do
ensemble predictions as described in Sec. 13.3.2.

RAD follows a generic approach since the proposed classification framework can be used with
any supervised machine learning algorithm, such as SVM, KNN, random forest, nearest centroid,
DNN, etc. Moreover, RAD can be applied to a large spectrum of different applications where noisy
data are collected and must be cleansed before used to train the classification model. Examples are
the failure detection, attack diagnosis and face recognition illustrated in Sec. 13.4.
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Figure 13.2 – RAD training data selection framework. Each block is a machine learning algorithm.
Data used to train is represented by colored arrows from the top. The flowchart is iterated at every
batch arrival with new labelled and unlabelled data coming in (black arrows on the left). The labelled
training data for C is cleansed based on the label quality predicted by L.

Data Selection Scheme The first component of RAD aims to select clean data instances from D
through the quality model. The objective of the label quality model is to select the most representative
data instances to train a strong classifier model. It solicits data instances with clean labels, avoiding
the pitfall that the classifier overfits the noise. RAD uses supervised-learning algorithms to continu-
ously train the label quality model from accumulated predicted clean data instances, to build a strong
classifier.

We term the following selection procedure as "basic," that is the default data selection scheme
of RAD and requires no addition history data lookup nor involvement of human experts. Li−1 is the
label quality model that is trained with data instances received up to time ti− 1, that is D0 . . .Di−1.
Upon the arrival of a new batch of data instances Di at time ti, we use the currently learned label
quality model Li−1 to predict the label quality q̂ for each data instance in Di by comparing the given
k and predicted class k̂Li . If they coincide, we consider the label as clean q = 1, otherwise as dirty
q = 0. Then we build D∗i as the subset of data instances from Di with q = 1 and discard the instances
with q = 0. This data flow is summarized in Algorithm. 3.

Algorithm 3 RAD
Input: Data batch Di and its given label Yi, label quality model Li−1, anomaly classification

model Ci−1
Output: Li, Ci

1: Predict Di by Li−1, get prediction label YL
i .

2: Compare Yi and YL
i , extract the data where predictions in Yi and YL

i are identical, combine them
as D∗i .

3: Li−1 sends D∗i to Ci−1 (if two models are not in the same location), two model catch D∗i locally.
Discard other data.

4: Li−1 and Ci−1 use all accumulated D∗t t ∈ [0,i] to train the model, get Li and Ci
5: return Li, Ci
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Generic Approach to Handle Dynamic Data The second component of RAD is the dynamic data
classifier C, whose data input has dynamic noise ratios. Ci is trained on all the predicted clean data
instances D∗ received until time ti, that is D∗0 . . .D

∗
i. We assume that D0 contains only clean data in-

stances to kickstart the framework and use the label quality model L0 . . .Li−1 to cleanse D1 . . .Di and
produce D∗1 . . .D

∗
i. Thus, the RAD framework uses the batch-by-batch updated data label quality

model to enrich the training data of the classification model.

Prediction Techniques Fig. 13.3 shows the structure of ensemble prediction, which combines the
prediction outcomes of both quality and classification models. The merging decision leverages the
confidences from the output probability vectors and the test accuracy of two models from last training
epoch. We provide the details in Algorithm. 4.

Figure 13.3 – Ensemble Prediction.

Algorithm 4 Ensemble Prediction
Input: Data Pi, label quality model Li, anomaly classification model Ci, testing accuracy of

Li−1 and Ci−1: accLi−1, accCi−1. Conv(): convert probability vector to category (class). Max(): return
maximum value in a vector.

Output: Predicted label Ŷi

1: Predict Pi by Li and Ci, get prediction lists YLP

i and YCP

i . They are in the same length (length of
Pi (|Pi|)). Each element of prediction list is a probability vector on length of number of classes,
sum of all bits is 1.

2: Initialize an empty list Ŷi of length |Pi|
3: for k ∈ {1,2, . . . , |Pi|} do
4: if Conv(YLP

i [k]) == Conv(YCP

i [k]) then
5: Ŷi[k]← Conv(YCP

i [k])
6: end if
7: if Conv(YLP

i [k]) != Conv(YCP

i [k]) then
8: if accCi−1×Max(YCP

i [k])>accLi−1×Max(YLP

i [k]) then
9: Ŷi[k]← Conv(YCP

i [k])
10: else
11: Ŷi[k]← Conv(YLP

i [k])
12: end if
13: end if
14: end for
15: return Ŷi
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13.4 Experimental Evaluation
In this section, we implement RAD, on IoT and Cluster datasets. Evolution of learning accuracy
under 30% and 40% noise level are reported for all three frameworks. For RAD, impact of noise level
on final accuracy is discussed in Sec. 13.4.4.

13.4.1 Use Cases and Datasets
In order to demonstrate the general applicability of the proposed RAD framework for anomaly detec-
tion, we consider the following two use cases: (i) Cluster task failures, and (ii) IoT botnet attacks.In
our experiments, we use real data collected in cluster and IoT platforms. These two datasets detailed
in Sec. 12.2

The main dataset characteristics are summarized in Tab. 13.2.

Table 13.2 – Dataset description

Use case Cluster task
failures

IoT device
attacks

#trainig data 60,000 33,000
#test data 6,000 6,000
#classes K 4 11
#features f 27 115
data batch size 600 300
|D0| 6,000 6,000

13.4.2 Experimental Setup
RAD is developed in Python using scikit-learn [105]. The main performance evaluation metric is
accuracy. All results are averaged on 3 times experiments.

Noise. We inject noise into the two datasets by exchanging the true label of data instances with a
random one except itself. The label noise is symmetric, i.e., following the noise completely at random
model [44] where a label is picked with equal probability from all classes except the true one. The
noise level Ỹ represents the percentage of data instances with noisy labels. We assume that all data is
affected by label noise, except the D0 and testing data.

Continual learning. We start with an initial data batch of 6000 data instances for the Cluster
task failures and the IoT devices dataset. Then, data instances arrive continuously in batches of 600
(Cluster) and 300 (IoT) data instances. To kick-start the label and classification models in RAD we
assume first batch contains only clean data, and subsequent data batches are affected by noise. We
select 6000 clean data instances as the test dataset for both use case. Test dataset will be used at the
end of each epoch to evaluate the accuracy of the trained classification models. We show the evolution
of the model accuracy over data batch arrivals until the performance of RAD converges.

Label model. We use a multilayer perceptron to mainly assess the quality of each label, it will
also be used to join the ensemble prediction. For IoT and Cluster dataset, the neural network consists
of two layers with 28 neurons each. The precision and robustness of the label model are critical to
filter out the noisy labels and provide a clean training set to the classification model. We considered
different models, neural networks provided the best results in terms of accuracy and stability over
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time. Adaboost gave excellent accuracy when training from the initial data with ground truth, but it is
too sensitive to noise in the labels. Random forest is also known to be robust against label noise [44],
however its accuracy was below the neural network one.

Classification model. We use KNN to jointly do the ensemble prediction with label model.Higher
values can increase the resilience of the algorithm to residual noise, but also induce extra computa-
tional cost. The current choice stems from good results in preliminary experiments.

Baselines. The proposed RAD is compared against following baseline data selection schemes:
(1) No-Sel, where all data instances of arriving batches are used for training the classification model;
and, (2) Opt-Sel which emulates an omniscient agent who can perfectly distinguish between clean
and noisy labels, and only use clean data to train the models; (3) IDS: intrusion detection system
from [1]. The main idea and structure of IDS are similar to the proposed RAD. The differences
are: i) IDS only trains label quality model with D0 once without continuous updated; and, ii) IDS
only uses classification model for predictions, instead of combining prediction results of quality and
classification models. In the following text, the model name ends with ‘_C’ means the prediction
obtained from the anomaly classification model, with ‘_L’ means the prediction obtained from label
quality model, with ’_Ens’ means the prediction obtained from both anomaly classification and label
quality model specified in Algorithm4.

13.4.3 Handling Dynamic Data

(a) With data noise level of 30% (b) With data noise level of 40%

Figure 13.4 – Evolution of learning over time – Use case of IoT thermostat device attacks. Opt_Sel
and No_Sel stand for optimal data selection and no filtering, respectively. _C, _L, and _Ens denote
the model or strategy chosen for prediction.

(a) With data noise level of 30% (b) With data noise level of 40%

Figure 13.5 – Evolution of learning over time – Use case of Cluster task failures

Fig. 13.4 and 13.5 show the evolution of the mean and variance of the classification accuracy
achieved by RAD on the thermostat and task failure datasets, respectively. Each figure moreover
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(a) IoT thermostat device attacks (b) Cluster task failures

Figure 13.6 – Impact of data noises on RAD accuracy

presents results under two levels of label noise: 30% and 40%. We compare RAD against no selection
(No-Sel), optimal selection (Opt-Sel) and IDS. One can notice that learning from all data instances
without cleansing (i.e., No-Sel curves) gives consistently lower accuracy in all cases. For the task
failure dataset, the accuracy even oscillates and diverges. The performance when using RAD is better.
First because the accuracy does not diverge. Second because it always consistently increase until it
saturates. The end accuracies are around 99% and 85.5% for the IoT attack and cluster tasks datasets,
respectively. For the first dataset, the accuracy of RAD follows closely the ensemble prediction
accuracy of Opt-Sel. As for the second dataset, RAD follows ensemble prediction of Opt-Sel at
first but then saturates after 30 data batch arrivals. Note that RAD gives also more stable results as
shown by shorter variance bars which in magnitude are in line with the ones obtained by an ideal data
cleansing. For No-Sel the bars are significantly larger.

We note that ensemble prediction can greatly enhance the learning outcomes in the presence of
noisy data, compared to conducting prediction with the label quality model or classification model.
Such an observation holds for different data selection schemes discussed in the subsequent section.
Due to the space limit, we skip the presentation of those results.

In summary: (i) continual learning is advantageous compared to using only the initial dataset;
however, (ii) continual learning exposes us to possible classification accuracy degradation stemming
from noisy labels if proper data selection is lacking, (iii) RAD improves the classification accuracy
compared to taking all labels, (iv) the data selection of RAD is good, and close to being optimal in
some cases, and (v) ensemble prediction can greatly enhance the robustness against noisy data.

13.4.4 Evaluation of Noise Robustness of RAD
Next we investigate the impact of different noise levels on the RAD performance in terms of classifi-
cation accuracy.

Fig. 13.6a and 13.6b present the classification accuracy for various levels of noise, ranging from
0% (all data are clean) up to 90% for our two main reference datasets: IoT thermostat device attacks
and Cluster task failures. All the experiment setting remains the same as before, only noise level of
training data batches varies. Once again, the RAD performance is compared to learning from all data
(No-Sel) and an omniscient data cleanser (Opt-Sel).

As illustrated in Sec. 13.2, for No-Sel the noisier the data are, the worse the classification accuracy,
with ensemble prediction, dropping to 20% and 52% for the Cluster and IoT datasets, respectively. A
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decreasing trend can also be found for RAD and Opt-Sel, however the drops are significantly smaller:
at most 5%. As there is by definition no noise in Opt-Sel case, the decrease in classification accuracy
is only due to the reduction of the overall amount of clean data to learn from. Since the data cleansing
of RAD is not perfect, the accuracy reduction is caused by noise pollution and overall clean data
reduction. Nevertheless, the impact is small and any huge accuracy pitfall is avoided which results in
RAD’s performance being close to Opt-Sel. We can conclude that RAD can limit the impact of the
amount of noise across a wide range of noise levels.

13.4.5 Analysis of All Datasets

Summary results are reported in Tab. 13.3. We can see that results of RAD are always better than IDS
and No-Sel. For IoT dataset with 40% noise, RAD is even better than any single model of Opt-Sel.
But there are still improvement room between RAD and Opt-Sel_Ens.

Table 13.3 – Evaluation of the all algorithms for Cluster task failures datasets and IoT device attacks
datasets on 30% and 40% noise level. All the results are averaged on 3 runs.

Algorithm Cluster(30) IoT(30) Cluster(40) IoT(40)

Opt-Sel_C 87.68 98.08 87.16 98.06
Opt-Sel_L 84.37 90.81 84.18 89.70
Opt-Sel_Ens 87.88 99.35 87.60 99.25
No-Sel_C 77.40 95.47 71.02 92.27
No-Sel_L 83.54 89.95 83.35 89.57
No-Sel_Ens 81.53 98.06 74.92 97.51

RAD 85.46 99.01 85.03 98.95
IDS 83.63 97.83 83.31 97.23
1. *_C: Using label predictor
2. *_L: Using classification model
3. *_Ens: Using ensemble prediction

The resilience to high levels of noise might be even more important than the benefits of contin-
ual learning. Under such levels, the classification accuracy without data cleansing diverges for all
datasets. Even if it is rare to have noise levels of 90% or above, they might still happen for short
periods of time in case of attacks to the auto-labelling system via flooding of malicious labels. Hence
this property can be crucial for the dependability of the auto-labelling system.

13.4.6 Limitation of RAD Framework

Though RAD works well for datasets of Cluster task failures and IoT device attacks, we can still
see the potential limitations of this framework: (1) the assumption of availability of a small fraction
of clean data which may not be possible; (2) if data is coming at high rates, training two models
simultaneously instead of one can slow down the system; (3) as anomaly classifier receives only the
data selected by label model, there is a risk that the classifier model overfits to label model. To address
these issues we devised two extensions presented in Chapter 14.
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13.5 Concluding Remarks
While machine learning classification algorithms are widely applied to detect anomalies, the com-
monly employed assumption of clean anomaly labels often does not hold for the data collected in the
wild due to careless annotation and malicious dirty label pollution. The noisy labels can significantly
degrade the accuracy of anomaly detection with an increasing amount of data and are challenging
to tackle due to the lack of ground truth of label quality. In this chapter, we present a framework
for robust anomaly detection, RAD, which can continuously learn the system dynamics and anomaly
behaviours from streams of arriving data after filtering out suspicious noisy data.

RAD is a general framework which consists of a sequence of a quality model and a classification
model, where the former mainly captures the label dynamics and the latter majorly focus on detection
anomaly. By incorporating ensemble prediction into RAD, we demonstrate the effectiveness of RAD
on two uses cases, i.e., detecting IoT device attacks, and predicting task failure at Google clusters.
RAD can robustly improve the detection accuracy against different levels of label noises, reaching up
to 85.56% and 99.01% accuracy under 30% noise for predicting task failure and detecting IoT device
attacks, respectively, whereas learning directly from all the data streams without filtering degrades the
detection accuracy. We also observe the limitations showed in Sec. 13.4.6, in next chapter, we will
provide the improved versions of RAD to response these shortcomings.





Chapter 14

Extension of RAD framework for On-line
Anomaly Detection for Noisy Data

In Chapter. 13. we see RAD’s ability to robustly improve the detection accuracy against different
levels of label noises. We also observe several limitations of this frameworks, as anomaly classifier
receives only the data selected by label model, thus there is a risk that the classifier model over-
fits to label model. We extend RAD with additional features of conflicting opinions of classifiers,
repetitively cleaning, and oracle knowledge, namely RAD Voting and RAD Active Learning. These
extensions are examined with the same use cases as RAD did in Chapter. 13: (i) detecting 10 classes
of IoT attacks and (ii) predicting 4 classes of task failures of big data jobs. To show the broad appli-
cability of our framework, we propose another extension of RAD: RAD Slim, which is specifically
designed to deal with image data. Therefore, we introduce a new use case: (iii) recognising 100
celebrities faces. Along with RAD Slim, we also introduce two other state of the art algorithms to
compare: (1) Forward loss correction and (2) Co-Teaching, which are introduced in Sec. 12.4.

14.1 introduction

The purpose of this chapter is to extend Robust Anomaly Detector (RAD) [142], a generic framework
that continuously learns an anomaly classification model from streams of event logs or images that
are subject to label noise. The original design of RAD is composed of two layers of learning models,
i.e., a data label model and an anomaly classifier. The label model aims at differentiating the label
quality, i.e., noisy v.s. true labels, for each batch of new data and only "clean" data points are fed
in the anomaly classifier. The anomaly classifier predicts the event outcomes that can be in multiple
classes of (non)anomalies, depending on the specific anomaly use case. In this extension, we derive
three alternatives of RAD, namely, voting, active learning and slim, which use additional information,
e.g., opinions of conflicting classifiers and queries of oracles. We iteratively update the prediction of
historical windows such that the weak prediction can be continuously improved the latest model.

To demonstrate the effectiveness of RAD, we consider three use cases, i.e., detecting 10 classes of
attacks on IoT devices [94], predicting four types of task failures for big data processing cluster [112,
116] and recognising the 100 most abundant celebrity faces [103] from open datasets.

Our results show that RAD Voting can improve RAD. If we implement RAD Active Learning on
cluster dataset with the same noise level, the final accuracy could reach to 90.51%. For face image
dataset, final accuracy of RAD Slim under 30% noise achieves to 76.51% (comparing to 40.01% of
no selection on dataset). Furthermore, our study also shows that RAD Voting is as stable as RAD
even when the noise is very strong. And if we do not have many clean data at beginning to pre-train
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the model, RAD Active Learning and RAD Active Learning Limited could still perform very well
from a very bad starting model.

14.2 Motivating case studies

Figure 14.1 – Impact of noisy data on anomaly classification: Use case of Face Recognition

IoT device attacks and Cluster task failures datasets are already introduced in the last chapter. In
this chapter, we introduce a new dataset: face recognition.

• FaceScrub dataset [103] is a collection of photos of celebrities roughly half female and half
male. The task is to recognize faces by matching each photo to the identity of the celebrity
shown on it. Here we focus on the face recognition of the 100 celebrities with the highest
number of photos in the dataset totalling to 12K images. Face recognition is widely used in
biometric identification systems for security applications, e.g., access control, which makes the
robustness of such systems critical. Furthermore, this image dataset is studied also because we
want to show the broad applicability of our proposed framework.

The details about data definition, and statistics, e.g., number of feature and number of data points,
can be found in Sec. 14.4.1. To recognize anomalies/faces in each use case, related studies have ap-
plied different machine learning classification algorithms, from simple ones, e.g., k-nearest neighbour
(KNN), to complex ones, e.g., deep neural networks (DNN), under scenarios with different levels of
label noise. Here, we evaluate how the detection accuracy changes relative to different levels of
noises. We focus on off-line scenarios where we split the data in a training set affected by label noise
and a clean evaluation set.

For face recognition we use a small subset of our complete dataset (which contains 100 celebri-
ties), it contains 2,639 images from 20 celebrities with varying degrees of label noise as the training
set and 665 clean images as the testing set. Due to the particularity of image data, we use MLP and a
specific CNN (Convolutional Neural Network) - ResNet (Residual neural Network) [63] (56 layers)
as classification models. Fig. 14.1 shows the accuracy results under the different label noise levels.
One can see, similar to the previous use cases, that label noise strongly affects the performance of
both classifiers, although, the effect here is approximately linear. Moreover, ResNet performs better
than MLP for this dataset under any noise level.
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Above experiment clearly show that under the presence of noisy label data, deep neural network
indeed corrupts. The stronger the noise, the worse the model’s accuracy. That case motivates us to
construct a new algorithm which can better resist the influence of noisy label data on training process.

14.3 Design of RAD Extensions
In this section, we will introduce the design of the extensions of RAD. All the symbols used to explain
the designs have same definitions as in Tab. 13.1. To make this manuscrit easy to follow, we recall
the symbol table as follows:

Symbol description

Symbol Description

L label quality predictor
C anomaly detection classifier
Di ith training data batch
D∗i ith cleansed data batch from L
Pi ith test data batch
Ŷi prediction of ith test data batch from C
Q̃i percent of clean labeled data of ith batch
Ui "unclean" data of ith batch determined by L
U ∗

i ith cleansed data batch from C
Si "unclean" data of ith batch determined by C
S∗i data with true label from Expert of ith batch
p̂ indicator of prediction, 1 for clean, 0 for dirty
q̂ indicator of prediction, 1 for clean, 0 for dirty

14.3.1 Overview of Design

RAD, same as its extensions, are composed of two key steps: training data selection and prediction
techniques, as shown in Fig.14.2. Training data selection part focus on how to filter out suspiciously
noisy data and solicit "clean" data to train the classification models subsequently. It has four options:
basic, voting, active and slim. The prediction part combines different prediction models. The avail-
able options are "ensemble", which combines the prediction outcomes of quality and classification
models, and "slim", which has only one model to filer and classify anomaly images. The specific
combinations are following: (i) Basic, RAD Voting and RAD Active Learning are followed by the
ensemble prediction, (ii) RAD Slim is followed by the Slim prediction, which only uses one model to
save the computation resources.

14.3.2 Data Selection Schemes

We will introduce the schemes of three extensions of RAD, namely RAD Voting, RAD Active Learn-
ing, and RAD Slim. We explain their specific pitfalls and opportunities.
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Algorithm 5 RAD Voting and RAD Active Learning
Input: Data batch Di and its given label Yi, label quality model Li−1, anomaly classification

model Ci−1
Output: Li, Ci

1: Predict Di by Li−1, get prediction label YL
i .

2: Compare Yi and YL
i , extract the data where predictions in Yi and YL

i are identical, combine them
as D∗i .

3: Li−1 sends D∗i to Ci−1 (if two models are not in the same location), two model catch D∗i locally.
Discard other data.

4: if Algorithm is RAD Voting or Active Learning then
5: Compare Yi and YL

i , extract the data where predictions in Yi and YL
i are different, combine

them as Ui. Send Ui, the corresponded given label YU
i and the corresponded prediction by

Li−1: YLU

i to Ci−1.
6: Predict Ui by Ci−1, get prediction label YCU

i .
7: if Algorithmis RAD Voting then
8: Select U ∗

i from Ui where: (1) labels in YU
i and YCU

i are identical. Or 2) If condition (1)
does not hold, but predictions in YCU

i and YLU

i are identical, we change given labels of
these data as the prediction in YCU

i , and include them in U ∗
i . Send U ∗

i to Li−1, two model
catch U ∗

i locally.
9: Calculate Si: difference between Ui and U ∗

i .
10: Add Si as element i to inactive data list Linac.
11: Select t1, t2 from [0,i-1] where Linac[t1], Linac[t2] are top two elements who have the largest

number of data in Linac.
12: Repeat state 1-10 with input (Dt1 , Yt1 , Li−1, Ci−1) and (Dt2 , Yt2 , Li−1, Ci−1). Use them to

update D∗t1 , D∗t2 , U ∗
t1 , U ∗

t2 , St1 and St2 .
13: Li−1 and Ci−1 use all accumulated D∗t , U ∗

t t ∈ [0,i] to train the model, get Li and Ci
14: return Li, Ci
15: end if
16: if Algorithm is RAD Active Learning then
17: Select U ∗

i from Ui where labels in YU
i and YCU

i are identical. Send U ∗
i to Li−1, two

model catch U ∗
i locally.

18: Calculate Si: difference between Ui and U ∗
i .

19: Send Si to Expert, Expert will return Si with its true labels to Li−1 and Ci−1, we call these
data S∗i .

20: Li−1 and Ci−1 use all accumulated D∗t , U ∗
t and S∗t t ∈ [0,i] to train the model, get Li and

Ci
21: return Li, Ci
22: end if
23: end if
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Figure 14.2 – Structures of RAD and its extensions: four choices of data selection and two choices of
prediction technique.

14.3.2.1 RAD Voting

The baseline RAD algorithm separates distinctive goals for the two models. However this approach
biases the results towards the label quality model L and we want the classifier model C to also play a
role in selecting clean data instances. We do this via the voting extension shown in Fig. 14.3.

Comparing to the base RAD, predicted dirty labels having q̂ = 0 are not discarded by L but passed
to C as uncertain data U . Then the classifier C is used to further cleanse the uncertain data to produce
U ∗. For each data instance in U we predict its class k̂C using C and looking for agreement with the
given class k and the class k̂L predicted by L. We add data instances to U ∗ if either k̂C equals k, or if
k̂C equals k̂L. In the latter we replace the given class by the predicted class.

Figure 14.3 – RAD - Voting.

Batches of data instances not added to U ∗
i at time ti are not immediately discarded but kept in

a batch Si of inactive data. The idea is that since the accuracy of the classifier improves over time
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(see Sec. 13.4.3), we can use the new classifier to re-evaluate old batches of inactive data and further
increase the training data. We maintain a list of the batches of inactive data Si After we finished
training a new classifier we select the two biggest batches and re-process them via the voting system
as before (see Algorithm. 5.

14.3.2.2 RAD Active Learning

In RAD Voting we use the two models C and L to correct labels and increase the overall amount
of data used for training aiming for improved framework accuracy, however not all data is used. To
increase further the amount of training data we resort to active learning, i.e., we ask an expert for the
true class of the data instances we are least certain about.

Fig. 14.4 shows the structure of RAD Active Learning. The difference with the structure of RAD
Voting is that in RAD Active Learning, we do not use the predictions from two models to correct the
labels and we do not send the most uncertain data instances to the inactive list Linac but to an oracle to
ask for the true label. In RAD Active Learning, potentially every data instance will be used to train L
and C and there is no inactive data anymore. In reality, consulting an oracle for every single uncertain
data instance might be too expensive. Hence we also consider RAD Active Learning Limited which
additionally imposes a configurable limit Nlim on the number of queries to be asked to the oracle at
each batch arrival. When the number of uncertain data instances exceeds this limit, we rank those
instances in the decreasing order of their euclidean distance between the corresponding prediction
probability vectors of C and L. Only the first Nlim data instances are chosen for the expert query. We
call it Highest Disagreement Method. The idea behind is that we want to ask the expert to check
data instances with the lowest confidence in their prediction.

Figure 14.4 – RAD - Active Learning.

14.3.2.3 RAD Slim

The RAD framework requires two models. and depending on the complexity of the models used the
cost of training might be excessive. Especially in scenarios relying on complex deep neural networks,
such as Convolutional Neural Networks (CNNs) for image classification, it might be too expensive
and time consuming to train two models. To reduce the computational costs we propose a slimmed
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Figure 14.5 – RAD Slim.

version of RAD Active Learning named RAD Slim. The idea is to partially delegate the role of the
label quality L model to the oracle.

In RAD Slim new data batches arrive directly at the C model, see Fig. 14.5. For each data instance
we compare the given label k and to the predicted label k̂C. If they are the same we add it to D∗, if
they differ we ask the oracle for the true label and add it to S ∗. To train the model Ci−1, we use only
current D∗i plus S∗i , not all the accumulated cleansed data as before. Considering computational cost,
one pair of D∗i and S∗i will be used to train the model for 60 epochs. Similar to RAD Active Learning,
we also impose a query limit here, termed RAD Slim Limited. We query experts for those data
instances with high uncertain model prediction outcomes. To rank the uncertainty, we resort to the
cross-entropy (loss) between given label and prediction probability vector made by C. Specifically,
we rank all the data of Si in decreasing order of their cross-entropy, and select corresponding data of
first Nlim. We call this Highest Loss Method.

14.4 Experimental Evaluation
In this section, we implement RAD, RAD Voting and RAD Active Learning on IoT and Cluster
datasets. Evolution of learning accuracy under 30% and 40% noise level are reported for all three
frameworks. For RAD Voting, analysis on percentage of active and active-truth data changing over
time is carried out in Sec. 14.4.3. RAD Active Learning and its small update RAD Active Learning
Limited are explained in section. The Impact of size of initial data batch D0 on above frameworks
are studied in Sec. 14.4.5. To demonstrate the applicability of the framework to image dataset, RAD
Slim and RAD Slim Limited are studied in Sec. 14.4.6.

14.4.1 Use Cases and Datasets
In order to demonstrate the general applicability of the proposed frameworks for anomaly detec-
tion, we consider the following three use cases: (i) Cluster task failures , (ii) IoT botnet attacks and
(iii) Face recognition. The characteristic of first two use cases have been introduced in Sec. 13.4.1. In
this section, we focus on the third one.

The FaceScrub [103] dataset is used for face recognition. Original FaceScrub contains more than
100,000 face images of 530 people, with about 200 images per person. Male and Female images are
almost equal. We use a subset of 12K FaceScrub images to fit the limits of our compute resources.
The 12K images cover the 100 people which have the highest number of images, 55 males and 45
females. FaceScrub images were retrieved from the Internet and are taken under real-world situations
(uncontrolled conditions). We resize all images to 64*64 pixels. Name is the only annotation we use.
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The face recognition system has been widely used in security equipment. We apply RAD Slimmed to
FaceScrub dataset to show that our framework can help to build also robust face recognition models.

The main dataset characteristics are summarized in Tab. 14.1.

Table 14.1 – Dataset description

Use case Cluster task
failures

IoT device
attacks FaceScrub

#trainig data 60,000 33,000 12,000
#test data 6,000 6,000 3,000
#classes K 4 11 100
#features f 27 115 64*64
data batch size 600 300 2400
|D0| 6,000 6,000 2400

14.4.2 Experimental Setup
RAD is developed in Python using scikit-learn [105]. The main performance evaluation metric is
accuracy. All results are averaged on 3 times experiments.

Noise. To compare with RAD, we stick to the same constant symmetric noise model as introduced
in Sec. 13.4. We still assume that all data is affected by label noise, except the D0 and testing data.

Continual learning. To have a fair comparison with RAD, the continual learning setting for
RAD Voting and RAD Active Learning Limited remains the same as in Sec. 13.4 for IoT and Cluster
datasets. For RAD Slim with FaceScrub dataset, due to the computational overhead, we will only
use current data batch to train the model. We have 2400 clean label images to kickstart the training,
then the subsequent batches contains 2400 images per batch. Test set has 3000 clean label images,
we evaluate the model after each training epoch.

Slimmed framework model. For the face recognition task we use RAD Slim. In this case
we use a 110 layers ResNet [63] as classification model. ResNet is a type of CNN architectures
which introduces residual functions to alleviate the vanishing gradient problem in training deep neural
networks improving the classification performance. Also to make model converge.

Baselines. The proposed RAD Voting and RAD Active Learning are compared against following
baseline data selection schemes: Full-Clean baseline which simulates perfectly recovered labels, i.e.,
all wrong labels have been correctly identified and recovered by an oracle. This represents the ideal
solution which provides all clean data in each data batch. In the following text, the model name ends
with ‘_C’ means the prediction obtained from the anomaly classification model, with ‘_L’ means the
prediction obtained from label quality model, with ’_Ens’ means the prediction obtained from both
anomaly classification and label quality model specified in Algorithm4.

To compare with RAD Slim on image dataset, we introduce two state-of-the-art approaches: 1)
Forward [104] which estimates the noise transition matrix before training the model, and subsequently
use this transition matrix for loss correction; and 2) Co-Teaching [59] which trains two deep neural
networks simultaneously to let them teach each other. For Forward experiment, we use the same
network architecture, i.e., 110 layers ResnNet, as the one for RAD Slim. As Co-Teaching trains
two models, we use two 56 layers ResNet for Co-Teaching. To speed up the model convergence for
RAD Slim, RAD Slim Limited, and Forward, we implement the E (Exponential)/PD (Proportional-
Derivative)-Control [143] (Chapter. 9) and Event-Based Control Learning rate [145] (Chapter. 10) as
learning rate schedule based on SGD (stochastic gradient descent) optimizer. Co-Teaching has its
own learning rate scheduler.
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Table 14.2 – Final accuracy for all algorithms for Cluster task failures datasets and IoT device attacks
datasets on 30% and 40% noise level. All the results are averaged on 3 runs. Full-Clean means that
no label noise is injected. Opt-Sel means use only clean label data out of all data (mixed with clean
and dirty labels). No-Sel means use directly all data.

Algorithm Cluster(30) IoT(30) Cluster(40) IoT(40)

Full-Clean_C 89.35 98.28 89.35 98.28
Full-Clean_L 85.17 90.87 85.17 90.87
Full-Clean_Ens 91.08 99.83 91.08 99.83
Opt-Sel_C 87.68 98.08 87.16 98.06
Opt-Sel_L 84.37 90.81 84.18 89.70
Opt-Sel_Ens 87.88 99.35 87.60 99.25
No-Sel_C 77.40 95.47 71.02 92.27
No-Sel_L 83.54 89.95 83.35 89.57
No-Sel_Ens 81.53 98.06 74.92 97.51

RAD 85.46 99.01 85.03 98.95
IDS 83.63 97.83 83.31 97.23

RAD Voting 86.01 99.21 85.73 99.07
RAD-AL1 90.84 99.72 90.77 99.58

RAD-AL-L2 89.57 99.66 - -
PSO3 87.83 98.85 - -
1. RAD-AL: RAD Active Learning
2. RAD-AL-L: RAD Active Learning Limited
3. PSO: Pre-Select Oracle

14.4.3 RAD Voting and History Extension
In the first extension we let both the label and classifier models vote on the label quality and include
the possibility to recover instances from history to be evaluated as the models performance improves
over time.

We evaluate the accuracy of RAD Voting over time and different noise levels in Fig. 14.6 and
Fig. 14.7 for the IoT thermostat and Cluster task failures, respectively. For IoT dataset, RAD Voting
is better than any single model of Full-Clean. And for Cluster dataset, RAD Voting does not saturate
as RAD in Fig. 13.5. Tab. 14.2 summarize and compare the RAD Voting performance with others.
We can see that RAD Voting performance is always better than RAD. This is because we correct
labels in RAD Voting algorithm, which thus increases the number of training instances than RAD

(a) Iot data with noise level of 30% (b) Iot data with noise level of 40%

Figure 14.6 – Evolution of learning over time – Use case of IoT thermostat device attacks with RAD
Voting and RAD Active Learning (RAD-AL). Full_clean means that no label noise is injected.
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(a) Cluster data with noise level of 30% (b) Cluster data with noise level of 40%

Figure 14.7 – Evolution of learning over time – Use case of Cluster task failures with RAD Voting
and RAD Active Learning

To better understand the different performance between the two data sets let us define A (called
Hot) as the percent of data used for training till time ti:

A =
∑

i
k=1(|D∗k |+ |U ∗

k |)
∑

i
k=1 |Dk|

.

Knowing the number of true clean labels used per batch CT
i we further define AHT (called Hot-Truth)

as the percent of true clean active data.

AHT =
∑

i
k=1CT

k

∑
i
k=1(|D∗k |+ |U ∗

k |)

In both formulas, we exclude the initial clean batch D0. Intuitively, A tells how much of the incoming
data we use for training, and AHT shows how clean the used training data is.

(a) Iot data with 30% noise (b) Cluster data with 30% noise

Figure 14.8 – RAD Voting: percentage of hot data and its ground truth.

Fig. 14.8(a) and (b) plot over time these two metrics for the IoT and task failures datasets, respec-
tively. As seen in Fig. 14.8(a), for the IoT dataset both A and AHT improve over time. This means
that the active data percentage both the amount of active data, i.e. A, and the quality of active data
AHT improve over time. On the contrary, looking at Fig. 14.8(b), for the Cluster dataset AHT does not
improve over time even if A increases. We impute this to the fact that both C and L predict the same
wrong class and this class is used to replace the original label of the data instance.
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14.4.4 RAD Active Learning
RAD Active Learning extends the RAD with the ability of asking an oracle to provide the true label
for the data instances where the two models do not agree. First we consider RAD Active Learning
with no limits on the number of oracle requests followed by RAD Active Learning Limited which
limits the number of oracle interactions.

Fig. 14.6 and Fig. 14.7 show the performance of RAD Active Learning (RAD-AL) for the IoT and
Cluster datasets under 30% and 40% noise, respectively. The figures compare RAD Active Learning
to RAD Voting, No-Sel and Full-Clean. We can see that RAD Active Learning is always better than
RAD Voting and almost as good as Full-Clean_Ens across the two different datasets and different
noise levels. From the results in Tab. 14.2, we can observe that the result of RAD Active Learning
is extremely close to Full-Clean_Ens who are the best in every column. That shows that our training
data selection in RAD Active Learning is very accurate, almost all the noisy data are filtered out for
consultations to expert.

In reality consulting every single uncertain data instance with expert might be too expensive or
impossible. Hence, we consider RAD Active Learning Limited which limits the capacity of consul-
tation with experts. Here we set the number of limit on 20% of batch size per batch, the reason is
because the experiment is with 30% noise data, the 20% consultation of batch size can reduce the total
consultation number comparing to no limitation. To illustrate the power of our training data selec-
tion process, we introduce a new comparison for RAD Active Learning Limited: Pre-Select Oracle.
Pre-Select Oracle has the same number of consultation to oracles as RAD Active Learning Limited,
but the data instances here are randomly selected before the training. Fig. 14.9 shows the results for
IoT and Cluster datasets, one can notice that curve of RAD Active Learning Limited (RAD-AL-L)
increases along with RAD Active Learning and largely outperforms Pre-Select Oracle. The accuracy
difference here is due to the uncertainty ranking used in the highest disagreement method. From the
result in Tab. 14.2, we can see that after imposing a expert query limit of 20%, RAD Active Learning
Limited reaches similar accuracy as RAD Active Learning, and higher accuracy than RAD and RAD
Voting.

(a) Iot data with noise level of 30% (b) Cluster data with noise level of 30%

Figure 14.9 – Comparison of RAD Active Learning Limited (RAD-AL-L) and Pre-Select Oracle,
showing the power of selection.

14.4.5 Impact of Initialization
Here we study the impact on the RAD and its extensions of the size of the initial dataset D0. We vary
the number of initial clean data instances from 100 to 6000, and measure the classification accuracy
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after 90 data batch arrivals. Her we consider the Opt-Sel baseline since the No-Sel baseline is meant
for the framework configuration, not its performance evaluation.

In Fig. 14.10a and Fig. 14.10b show the results for the IoT and Cluster datasets, respectively. Opt-
Sel_Ens seems to be independent from the number of initial data instances (|D0|) in Fig. 14.10a. This
is due to the fact that after 90 batch arrivals the amount of training data is sufficient for the accuracy
to converge. But in Fig. 14.10b, we can see |D0| has influence on Opt-Sel_Ens, the model is yet
to converge at the end of learning, but this influence is clearly smaller than that for RAD and RAD
Voting. For these two models the size of D0 does matter: the larger the better. At |D0| = 2000 their
performances are similar to Opt-Sel_Ens (less than 5% difference) for IoT dataset, and at |D0|= 6000
they almost overlap. RAD Voting outperforms RAD in both datasets under all sizes of D0. This
is because RAD Voting can correct data labels and thus increase the number of training instances.
Finally, RAD Active Learning and RAD Active Learning Limited (20% limit) do not depend on the
size of D0, since they can ask the oracle for the label of uncertain data instances.

This justifies our earlier choice of D0 having 6000 data instances as it enables to achieve the
best accuracy. However, all proposed frameworks could also perform well with only half of the data
instances in D0.

(a) IoT thermostat device attacks (b) Cluster task failures

Figure 14.10 – Impact of size of initial data batch D0 on RAD accuracy with 30% noise level

14.4.6 RAD Slim on Image Data
Here we evaluate the RAD framework on the challenging case of noisy image classification. Specifi-
cally, we apply RAD Slim and RAD Slim Limited (20% limit of batch size per batch) to train a clas-
sifier that encounters on-line noisy image benchmarks. Fig. 14.11 shows the accuracy results across
the batch arrivals. We can observe that RAD Slim is close to the Full-Clean baseline and largely
outperforms other baselines. A summary is presented in Tab. 14.3. Fig. 14.12 shows the comparison
between RAD Slim, RAD Slim Limited and Pre-Select Oracle (same design as in Sec. 14.4.4). One
can see that RAD Slim Limited performs much better than Pre-Select Oracle while two experiments
have the same number of expert queries.

Another observation is that, under 30% noise level, the accuracy difference (10.33%) between
RAD Slim and RAD Slim Limited is much bigger than the resulting difference between RAD Active
Learning and RAD Active Learning Limited for dataset IoT (0.06%) and Cluster (1.27%). One reason
is that, to find out noisy data, the Highest Disagreement Method based on the predictions of two
models in RAD Active Learning Limited is more efficient than the Highest Loss Method based on the
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prediction of only one model in RAD Slim Limited. Even if the consultation numbers are the same,
all data points do not contribute equally for model training process, certain data are more critical than
others [60].

To further display the effectiveness of RAD Slim on different type of attacks, we design a series
of unbalanced noisy data batches. For the original facescrub dataset, the image ratio of male and
female is about 55%:45%. For D0 of the unbalanced data batches, image ratio of male and female
is 90%:10%, where for the following noisy data batch, the ratio of male and female is 45%:55%.
Fig. 14.13 shows the results, RAD Slim performs definitely better than no selection, and very close
to full clean scenario, which shows that RAD Active Learning can not only defend the model from
different levels of noise, but also can resist other type of attacks.

Another thing we could notice is that all curves suffer a periodic up-down pattern. This is because
for image dataset, each time a new batch comes, we only use this new batch data as training dataset.
As different batches provide different subviews of the data the empirical distribution can be different
as well as the calculated optimum, but the overall model remains the same. So for the first epoch of a
new batch, we will generate a gradient which is based on new data but applied on an old model. This
influences the accuracy of the model. Moreover, when retraining on each new data batch we reset the
learning rate which causes a bump in the learning rate. Therefore, even if all batches follow the same
distribution, the system could temporarily wander off from the previous optimum.

Figure 14.11 – FaceScrub with noise level of 30%, comparison with state of the art algorithm

Figure 14.12 – RAD Slim Limited on FaceScrub with 30% noise



140

Figure 14.13 – Unbalanced FaceScrub with 30% noise

Table 14.3 – Final accuracy of the different algorithms on FaceScrub dataset with 30% noise, all the
results are averaged on 3 runs.

Algorithm Accuracy

Full-Clean 81.72
No-Sel 38.89
Forward 41.71
Co-Teaching 47.39

RAD Slim 77.51
RAD Slim Limited 67.18
Pre-Select Oracle 52.12

RAD Slim-Unbalanced 66.12
Unbalanced-No-Sel 37.11
Unbalanced-Full-Clean 69.95

14.5 Concluding Remarks
RAD is a general framework that consists of label quality predictor and classification model, where
the former is mainly used to capture the label dynamics while the latter focuses on increasing the
diversity of prediction. But their predictions all contribute to the final decision on detecting anomaly
by the design of ensemble prediction. To adapt to the on-line nature of anomaly detection, we extend
RAD with additional features of conflicting opinions of classifiers, repetitively cleaning, and oracle
knowledge, corresponding to RAD Voting, RAD Active Learning, and RAD Active Learning Limited.
We demonstrate the effectiveness of RAD and its extensions on three uses cases: detecting IoT device
attacks, predicting task failure at Google clusters and recognising celebrity faces using FaceScrub.
The evaluation results on the three use cases show remarkable accuracy values that are close to the
case without anomalies in the input. In a nut shell, we prove RAD is a general robust learning
framework that can be applied on different classification models and enhance their robustness against
noisy inputs during the on-line training.



Chapter 15

Conclusions on Noisy Data Learning

While classification algorithms are widely applied to detect anomalies, the commonly employed as-
sumption of clean anomaly labels often does not hold for the data collected in the wild due to careless
annotation and malicious dirty label pollution. The noisy labels can significantly degrade the accuracy
of anomaly detection with an increasing amount of data and are challenging to tackle due to the lack
of ground truth of label quality.

Therefore, we introduce an on-line framework for robust anomaly detection: RAD, which can
continuously train the system to detect abnormal behaviours from streams of arriving data after filter-
ing out suspicious noisy ones.

RAD is a general framework that composes of label quality predictor and classification model,
where the former is mainly used to capture the label dynamics while the latter focuses on increasing
the diversity of prediction.

We extend RAD to RAD Voting, RAD Active Learning, and RAD Active Learning Limited to
fit in the on-line nature of anomaly detection. RAD and its extensions are evaluated on three uses
cases, i.e., detecting IoT device attacks, predicting task failure at Google clusters and recognising
celebrity faces using FaceScrub. Results show remarkable accuracy that are close to the case without
encountering anomaly input. To summarize, RAD is a general robust learning framework that can
be applied on different classification models and enhance their robustness against noisy inputs during
the on-line training.

However, since the data for training are selected on the fly rather than selected in the beginning,
it is hard to characterize these sample-selection biases, and then it is hard to give any theoretical
guarantee on the consistency of learning.

To continue improving the RAD and its extensions, one possible direction is to incorporate uncer-
tainty ranking method into RAD Voting. RAD Voting sets directly some data as inactive, and we can
thus introduce the uncertainty ranking method to RAD Voting as we proposed for RAD Active Learn-
ing Limited and RAD Slim Limited, which could re-activate more data to join the training without
help of expert. For the uncertainty ranking method, such as Highest Loss Method introduced for RAD
Slim Limited, we can observe that, under 30% noise and 20% consultation limit, the result difference
(10.33%) between RAD Slim and RAD Slim Limited is bigger than the difference between RAD Ac-
tive Learning and RAD Active Learning Limited for dataset IoT (0.06%) and Cluster (1.27%). One
possible reason could be due to the uncertainty ranking method as Highest Disagreement Method for
RAD Active Learning Limited is calculated based on the predictions of two models. And it is more
efficient than Highest Loss Method for RAD Slim Limited, which is calculated based on the pre-
diction of only one model. Another possible reason could be that Highest Loss Method is not good
enough, further studies needed to explore this.
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This thesis conducted several studies concerning three domains: system identification, control
engineering and machine learning. All the issues addressed in this work can be grouped in three
parts: 1) system identification and optimal control on macroeconomic models, 2) performance-based
feedback control and event-based control on learning rate algorithm and 3) training machine learning
model with noisy label data.

The first part explores the usage of system identification on China and France macroeconomic
model. For the China use case, we conduct the analysis using methods from econometrics. We not
only estimate the model, but also identify the Granger causality between variables. The contribution
of this work is more on the economic side, it reveals the trend of China’s economic growth transition:
from export-oriented to consumption-oriented. For the France case, system identification is also per-
formed. The final model is represented as state space equations instead of auto-regressive equations
which are used in economic. We designed an optimal control schema via LQR, the objective of this
control is to maintain a constant growth rate of one of the outputs (i.e. GDP). The control engineering
can impose constraints on inputs and perturbations on outputs, which can emulate real world situa-
tions such as the 2008 financial crisis. When a perturbation is injected on outputs (e.g. GDP, Export
and Import), one can observe the recovery trajectory of outputs and the reactions of inputs (e.g. Inter-
est rate, Household consumption and investment). We believe that this tool can be really helpful for
economist to study the evolution of an economic system. This control algorithm is coded in Simulink
it is more user-friendly, it can extend its inputs and outputs with more variables, and easy to adopt to
any other economic data.

The second part investigated the possibility to incorporate control theory into learning algorithms.
Due to the limitation on capacity of computational resources and availability of data, continual learn-
ing are indispensable for many use cases. As the data comes in batches, first problem raised is that
the time interval between two data batches can be short, therefore we need to learn as fast as possible.
Another uncertainty is that data distribution between different data batches can vary a lot, so we need
to make sure the model continuously improves. Moreover, converging speed and stability are two
key indicators to evaluate the machine learning algorithms in a continual learning scenario. Learning
rate and gradient are two main factors to control the converging speed. State of the art learning rate
algorithms can be grouped into two categories: 1) time-based and 2) adaptive gradient. The theory
behind the time-based ones is that at the beginning of the training, since the model is far from its
optimum, we should use larger learning rate. But when the model is close to the optimum, we should
use smaller learning rate to avoid skipping it. The difference between the existing time-based algo-
rithms is only that some of them decrease faster (slower) than others, and also that some of them also
add oscillations during the descent process. The disadvantage of time-based learning rate is that the
trajectory of learning rate is prefixed, it can not be adjust itself based on the performance of the model.
The adaptive gradient is the recent state of the art, it considers not only the current gradient, but also
implement a moving window on historical gradients. The result shows that it indeed accelerates the
learning process, however there are also studies show that it has two shortcoming: i) adaptive gradi-
ent algorithm tends to converge faster at the beginning of the training, but the final model has worse
performance comparing to the algorithm based on stochastic gradient descent (SGD), ii) some of the
adaptive gradient methods are shown not being able to converge to optimal solution in certain cases.

Therefore, we propose our first performance-based learning rate algorithm: E (Exponential)/PD
(Proportional Derivative) control. The learning rate is calculate based on the current loss value and
historical loss values, and we evaluate the trend of learning process to decide the current learning rate.
Since our algorithm is also based on SGD, the stability is assured [61]. The experiments are based on
convolutional neural network (CNN) with CIFAR10 and Fashion-MNIST datasets, the results show
that not only our algorithm outperforms the comparisons in final accuracy, final loss and converging
speed, but also the result curve of accuracy and loss are also extremely stable near the end of training.
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Although the E/PD performs well in continual learning scenario, there is still the room for im-
provement. One observation from E/PD experiments is that when the loss value continuously de-
creases, our learning rate decreases too. This property is good to ensure the stability, but it sacrifices
the converging speed. Because the continuously decreases mean the mode is approaching the opti-
mum, we should not reduce the learning rate to slower this steps. This observation motivates us to
propose our event-based learning rate algorithm based on E/PD, it prevent the sudden drop of learning
rate during the PD phase of E/PD control. New results show that it improves the final accuracy, final
loss value and converging speed of the model.

Another observation from E/PD experiment is that the learning curve converges so fast with E/PD
control that only after a few training epochs, the model accuracy becomes stable for one data batch.
Since we fix a training epoch number for each data batch, there are actually many wasted training
epochs on which do not improve the model performance. This observation motivates us to think: If the
learning rate can be adjusted by performance, why not also the training epochs? Therefore, the event-
based training epochs algorithm is proposed, it monitors the learning process, once it detects that
there is no improvement over last epochs, stops training for current data batch and turns to welcome
next data batch. The results show that event-based training epochs can massively reduce the training
epochs while maintain a similar performance of the model. This means it can enormously help the
training if the time interval between data batches is limited.

The most important is that Event-based training epochs algorithm is independent to dataset and
machine learning algorithms, therefore all the algorithms implemented on continual learning scenario
can use event-based training epochs method. Future studies need to focus on comparisons between
the machine learning algorithm with and without integrating event-based training epochs, as it can
potentially show that this method could improve all algorithms under continual learning scenario.

The third part focus on the dirty label data learning problem. Even though is a hot topic in com-
puter science community in recent years, it is actually a fundamental problem for both system iden-
tification and machine learning. Since the collected data is bigger and bigger it becomes much more
difficult to ensure the data quality. Check each data point is a time-consuming work, but wrongly
labelled data influences the results of a training model. The Robust Anomaly Detector (RAD) is a
general two-layer framework we proposed to solve the dirty label data learning problem for anomaly
detection use case. During the training data selection period, this first layer is primarily used to filter
out the suspicious data, while this second layer mainly detects the anomaly patterns from the remain-
ing data. With our design, predictions from both layers contribute to the final anomaly detection
decision. The learning scenario is still a continual learning scenario, the difference in this work is that
we will use all the accumulated data batches to update models. Experiments are implemented on two
dataset: 1) IoT device attack detections 2) Google Cluster task failure predictions. Results show that
RAD can definitely improve the accuracy of prediction over time, while the model can diverge if no
intervention is conducted. The experiment with varying noise level shows that RAD can resist strong
noise on labels.

Nevertheless, one can see an obvious shortcoming in that we train two models in RAD, but we
use only first layer to select training data, the second layer only used to increase the diversities for
ensemble prediction. To leverage the prediction from second layer, we proposed RAD Voting, which
takes the predictions from both layers in consideration to select training data. As from the experiments
with RAD we can observe that the two models are all improving over time, we let RAD Voting not
only select the training data from current data batch, but also re-do the selection on historical data
batch to constantly improve the data quality. Results show that RAD Voting inherits the stability from
RAD, it can also resist high noise level on labels and improves the prediction accuracy comparing to
RAD.

Another extension of RAD is RAD Active Learning, it introduces an expert in the framework
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which we can query for the true label of data. We extract the conflicts of predictions from two
models to construct a "disagreement zone" on data, and we only query this part of data to the expert.
Results show that RAD Active Learning can achieve the final accuracy as if there is no noise in the
labels, even if we are under 30% and 40% noise level. In reality, to send all the uncertain data to an
expert can be expensive or even computationally impossible, therefore we proposed the RAD Active
Learning Limited which imposes a limitation on the number of consultations send to the expert.
Highest Disagreement method is also proposed to rank the uncertainty of data. The experiment result
with 20% limit of batch size under 30% noise shows that the final accuracy of RAD Active Learning
Limited is just slightly degraded than RAD Active Learning, which means the highest disagreement
method really filter out the most uncertain data, and they are the critical one to construct models.

To implement the experiment on image dataset, due to the limitation of computational resources
as spontaneously training two CNN can be too expensive and time-consuming, therefore we propose
a variant of RAD Active Learning: RAD Slim, which contains only one layer, and totally delegate
the usage of second layer to the expert. We also propose the framework RAD Slim Limited as a
counterpart to RAD Active Learning Limited. Highest Loss method is proposed to rank the uncer-
tainty in RAD Slim Limited. To accelerate the training process, E/PD control is also introduced in
this experiment. Results show that RAD Slim largely outperforms the state of the art comparisons on
the face recognition dataset, its result is very close to the case without any noise in the labels.

Obviously, Highest Loss Method still has room for improvement in order to minimize the result
difference between RAD Slim and RAD Slim Limited. Since the original data label can be a dirty
one, the calculated loss value can be biased. So one possible direction to continue this research is to
study the distribution of the logits before last softmax layer in CNN.

In a bird’s-eye view to summarize this thesis, the above three parts are all around one theme:
System Identification & Machine Learning. First part studies the applications of system identification
on economic data, and incorporate the estimated model into the control system. Second part touches
the core part of system identification, using control theory to improve the training efficiency of ma-
chine learning model. Third part deals with the vulnerability of machine learning model regarding
to mislabelled training data. All these studies show the significant benefits from conducting theo-
retical research to solving real world problems in a multidisciplinary team. And all work shows the
possibility for further development.
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Cette thèse se concentre sur l’utilisation des méthodes d’apprentissage automatique et de la théorie
du contrôle pour fournir de nouvelles méthodes d’analyse aux problématiques économiques. D’abord
il faut savoir que l’identification des systèmes et l’apprentissage automatique sont deux concepts
similaires mais utilisés indépendamment dans les communautés automaticiennes et informaticiennes.
L’identification des systèmes utilise des méthodes variées pour construire des modèles mathéma-
tiques à partir de données mesurées ou estimées. Ces modèles sont par la suite utilisées pour con-
trôler l’évolution future du procédé ou pour faire du diagnostic et de la maintenance. Les algorithmes
d’apprentissage automatique construisent un modèle mathématique à partir des échantillons de don-
nées, appelés «données d’apprentissage» (qui sont propres ou non), afin de faire des prédictions ou
des décisions sans être explicitement programmé pour le faire. La précision de la prédiction, la vitesse
de convergence et la stabilité sont des facteurs clés pour évaluer le processus de l’apprentissage, en
particulier dans le scénario d’apprentissage en ligne. Nous remarquons cependant que ces propriétés
sont déjà été bien étudiées dans la théorie du contrôle. Le but de cette thèse est de mettre en œuvre
des recherches interdisciplinaires entre ces domaines.

Les études menées dans cette thèse peuvent être divisées en trois parties/thèmes : 1) Identification
du système et contrôle optimal sur les données macroéconomiques ; 2) Utilisation de la théorie du
contrôle pour améliorer l’apprentissage en ligne du réseau neuronal profond ; 3) Apprentissage au-
tomatique à partir de données non fiables. Le travail de recherche a débuté par le premier thème puis
il s’est élargi progressivement avec la volonté de création d’un cadre robuste pour faire face aux don-
nées d’apprentissage bruitées. Nos travaux étant axés sur la méthodologie, peuvent être appliquées
aux différents types de données (économiques ou pas).

15.1 Identification du système et contrôle optimal avec des
données macroéconomiques

Il existe de nombreux concepts similaires utilisés à la fois en économétrie et dans l’automatique pour
réaliser l’identification des systèmes tels que: l’utilisation des modèles Exogenous Vector Autore-
gressive (VARX) pour représenter le système, l’utilisation du critère d’information Akaike (AIC)
pour estimer l’ordre du modèle et l’utilisation du moindre carré ordinaire (MCO) pour l’estimation
des paramètres. Dans cette partie notre but est d’appliquer ces techniques d’indentification dans deux
études différentes. Pour montrer l’interopérabilité des méthodes, dans la première étude nous allons
utiliser seulement les méthodes couramment utilisées dans le domaine de l’économétrie et dans la
deuxième étude nous allons utiliser un mélange des méthodes pour optimiser les résultats. Même
si la plupart des étapes sont les mêmes il existe encore des différences (par exemple sur la manière
d’identifier l’ordre des modèles). Dans la seconde étude nous réalisons également un contrôle optimal
de type Linear Quadratic Regulator (LQR) sur le modèle estimé en introduisant des contraintes sur
les entrées, des perturbations sur les sorties. Ceci a pour but de montrer la robustesse de notre loi de
contrôle.

• Nous effectuons d’abord une analyse de tendance de la transition économique de la Chine avec
les méthodes d’identification des systèmes largement utilisées dans le domaine économique.
Cette étude est réalisée en utilisant les données macroéconomiques de la Chine : les exporta-
tions annuelles, la consommation des ménages et le Produit Intérieur Brut (PIB) de la Chine
de 1985 à 2014 qui sont obtenus auprès de la Banque mondiale. L’exportation se compose de
biens et de services. Les données annuelles sur les entrées d’Investissement Direct à l’Etranger
(IDE) pour la même période proviennent de diverses sources, notamment le Fonds Monétaire
International (FMI) de 1985 à 1989 et UN Comtrade de 1990 à 2014. Toutes les séries sont
déflatées par le déflateur du PIB (2010 = 100), les données du déflateur du PIB est également
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obtenu auprès de la Banque mondiale. Toutes les variables sont exprimées en logarithme pour
linéariser les séries temporelles car leurs courbes originales sont plus similaires à la distribution
exponentielle.

Dans un premier temps, afin d’utiliser le régresseur des moindres carrés et d’estimer un modèle
vectoriel à correction d’erreur (VECM), nous allons tester la stationnarité de chaque variable
et leur première différence par le test de racine unitaire Augmented Dickey-Fuller (ADF). Le
résultat montre que l’on ne peut pas rejeter l’hypothèse nulle pour les variables de niveau, mais
les valeurs de leur première différence sont stationnaires. Avant d’estimer le modèle VEC, un
test de cointégration est également mis en œuvre. Une équation de cointégration est estimée et
elle montre que le PIB chinois dépend fortement des exportations, même si la consommation et
les IDE y contribuent également.

Ensuite, nous utilisons l’équation de cointégration et la première différence de toutes les séries
temporelles pour estimer un modèle VEC. Avec le modèle VEC, nous pourrions implémenter
un test de Wald pour identifier la causalité de Granger entre les séries temporelles. Les résultats
montrent qu’il n’y a pas de causalité de Granger bidirectionnelle entre la croissance (c’est-à-
dire la première différence) du PIB et la croissance des exportations, ce que de nombreuses
études sur le stade précoce (entre 1978 et 1990) de la politique de la porte ouverte de la Chine
ont montré. De plus, comme nous prenons en compte la consommation, ce qui n’a pas été
fait dans les études précédentes, les résultats montrent qu’il existe une causalité de Granger
bidirectionnelle entre la croissance de la consommation et la croissance du PIB de la Chine.
Cette étude révèle la tendance de la transition de la croissance économique de la Chine: de
l’exportation à la consommation.

• Au fur et à mesure de l’avancement nous avons eu la volonté d’introduire plus de variables
avec des données plus riches (par exemple des données trimestrielles et non annuelles), mais
certaines données chinoises (par exemple l’investissement total ou les dépenses publiques) sont
très limitées. Ces raisons nous conduisent à mener un travail en utilisant les données macroé-
conomiques de France. Toutes les données sont obtenues auprès de l’Institut National de la
Statistique et des Études Économiques (INSEE). Après des discussions avec des experts sur
la question, nous décidons d’étudier 6 séries temporelles: Production Intérieure Brute (PIB),
exportation (EXP), importation (IMP), consommation des ménages (HC), formation brute de
capital fixe (FBCF) et public dépense (PE). Dans notre analyse ultérieure du modèle Multi-
Input Multi- Output (MIMO), GDP, EXP et IMP seront utilisés comme sorties, HC, FBCF et
PE seront utilisés comme entrées. Toutes les données sont trimestrielles, allant du premier
trimestre de 1980 au quatrième trimestre de 2018. Les données originales sont présentées sur
les valeurs du prix courant, nous le dégonflons par le déflateur du PIB de la France (année de
base: 2014) obtenu auprès de la Banque mondiale. Comme nous l’avons montré dans l’étude du
modèle macroéconomique de la Chine, nous allons également implémenter le logarithme sur les
séries chronologiques françaises. Pour construire un modèle vectoriel autorégressif (VAR), des
tests de racine unitaire sont également effectués, le résultat montre que la première différence
de logarithme de la série chronologique d’origine est stationnaire. Par conséquent, toutes les
variables utilisées dans les études ultérieures seront transférées en tant que telles. Pour estimer
un modèle VAR, nous estimons d’abord l’ordre de chaque équation. Cette méthode considérera
non seulement les critères (c’est-à-dire les résidus du modèle estimé sur les données de valida-
tion), mais également une pénalité (c’est-à-dire le nombre de commandes). Nous obtenons une
première estimation de l’ordre cependant après avoir examiné les paramètres des équations nous
réduisons encore l’ordre de certains équations pour arriver à l’ordre final: 5 pour l’équation du
PIB, 4 pour celle de l’exportation et 4 pour celle de l’importation. Après avoir estimé les co-
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efficients du modèle VAR, nous le mettons dans une représentation de type espace d’états car
cette représentation facilite la conception et l’implémentation de l’algorithme de contrôle de
type Régulateur Linéaire-Quadratique (LQR) que nous allons utiliser. Comme Matlab fournit
des fonctions prédéfinies pour calculer les paramètres de la loi de commande LQR nous allons
utiliser ce logiciel.

La théorie du contrôle optimal concerne l’exploitation d’un système dynamique en minimisant
une fonction de coût. Le cas où la dynamique du système est décrite par un ensemble d’équations
différentielles linéaires et le coût est décrit par une fonction quadratique est appelé un problème
de type LQ. L’un des principaux résultats de la théorie est que la solution est fournie par le
régulateur linéaire- quadratique (LQR).

Nous utilisons LQR pour concevoir le système de contrôle, l’objectif de ce système est d’amener
d’une façon optimale les sorties aux valeurs désignées tout en respectant certaines contraintes.
Dans le critère quadratique d’optimisation que nous utilisons il y a deux matrices de paramètres
Q et R que nous faisons varier pour donner plus de priorité au contrôle ou aux sorties. Nous
introduisons également des contraintes sur les entrées ainsi que des perturbations sur les sor-
ties pour simuler une crise économique. L’intégralité des lois de commande sont implémentées
avec Matlab et Simulink. Les résultats montrent que la variation de la matrice R peut contrôler
la vitesse de convergence du système à contrôler. Les tests avec des contraintes sur les entrées
et des perturbations sur les sorties montrent que notre algorithme peut en effet simuler des scé-
narios proches de la réalité, ainsi ce système peut nous aide à étudier les différentes voies de
reprise après une crise économique.

15.2 Utilisation de la théorie du contrôle pour améliorer
l’apprentissage en ligne du réseau neuronal profond

Cette partie aborde la question de l’adaptation dynamique du taux d’apprentissage (learning rate) afin
d’entrainer un réseau de neurones. Le taux d’apprentissage est un hyperparamètre qui contrôle dans
quelle mesure le modèle doit être modifié en réponse à l’erreur estimée chaque fois que les poids
du modèle sont mis à jour. Lorsque le taux d’apprentissage est trop élevé, la descente de gradient
peut augmenter plutôt que réduire l’erreur d’apprentissage. Lorsque le taux d’apprentissage est trop
faible, l’apprentissage est non seulement plus lent, mais peut rester définitivement bloqué dans un
minimum local au lieu d’aller vers le minimum global. Par rapport aux nouveaux algorithmes qui se
concentrent principalement sur le taux d’apprentissage basé sur le temps ou les méthodes de gradient
adaptatif, nous proposons un algorithme basé sur la performance. Avant de présenter notre algorithme,
nous introduisons d’abord le scénario d’apprentissage en ligne: les données sont livrées par batch et
pour chaque batch de données, nous utilisons les données avec les mêmes epoch d’apprentissage
pour entraîner le modèle. Il faut remarquer que nous utilisons que le nouveau batch de données pour
entraîner notre modèle, l’ancien batch de données sera jeté à l’arrivée d’un nouveau batch de données.

• E (Exponential) / PD (Proportional Derivative) Control est notre algorithme de taux d’apprentissage
proposé, qui vise à accélérer la vitesse de convergence en augmentant de façon exponentielle
le taux d’apprentissage au début de l’apprentissage à partir d’un nouveau batch, car les don-
nées sont nouvelles et donc elles ont plus d’informations pour apprendre. Nous présentons un
algorithme en deux phases pour contrôler le taux d’apprentissage: (i) une croissance exponen-
tielle initiale suivie de (ii) un contrôle de celle-ci à partir d’une régulateur de type proportionnel
dérivé (PD). Pendant la période de croissance exponentielle, le taux d’apprentissage est double
augmenté à chaque pas de temps dans le but d’atteindre rapidement le voisinage du minimum
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global. Cette phase est arrêtée lorsque le coût (c.à.d. l’erreur entre la classe réelle et celle
prédite par le réseau) commence à augmenter, et l’évolution du taux d’apprentissage est ensuite
régi par la loi de commande PD. Les paramètres PD sont initialisés avec la dernière valeur du
taux d’apprentissage avant la croissance des coûts. Après avoir mis en œuvre les expériences
sur CIFAR-10 et Fashion-MNIST, E/ PD est comparé à deux algorithmes de pointe Keras-Time-
Based-decay et Exponential-Sine-Wave-decay. Les résultats montrent que l’E/PD surpasse les
deux non seulement en termes de précision finale et de coût final, mais aussi que la vitesse de
convergence et la variabilité de ces courbes de coût et de précision sont également meilleures

• Après analyse des résultats de l’expérience E / PD, nous avons pensé qu’il y avait encore
de la place pour améliorer. Par exemple, nous remarquons que pendant la phase ou le taux
d’apprentissage est calculé par la loi PD, alors que le coût diminue, le taux d’apprentissage
est parfois mis à jour et donc diminue également. Si le coût diminue ceci signifie que nous
sommes dans la bonne direction, donc abaisser le taux d’apprentissage à ce moment-là n’est
pas bon pour la vitesse de convergence. Une autre amélioration est la suivante: pour chaque
batch de données, la plupart de l’amélioration des performances ne se produit que pendant les
premières epoch d’apprentissage. Pour résoudre ce problème, nous proposons deux méthodes
basées sur le contrôle événementiel. Le premier algorithme, appelé calcul évènementiel du taux
d’apprentissage, interrompt la mise à jour du taux d’apprentissage pendant la phase contrôlée
par le PD tant que la fonction cout continue de diminuer. Le deuxième algorithme, appelle
calcul évènementiel du taux d’apprentissage basé sur les epoch, contient une approximation
locale linéaire de la fonction de cout avec m derniers valeurs. Si la pente de la courbe est
supérieure à un seuil prédéfini ceci signifie que la tendance de diminution de la fonction de
coût ne diminue plus et que donc nous pouvons passer à l’apprentissage à partir du prochain
batch. Les résultats montrent que l’E/PD avec les deux couches évènementielles (c’est-à-dire
une pour le taux d’apprentissage et l’autre pour les epoch) peut massivement réduire le temps
d’apprentissage, avec parfois une valeur de coût plus faible et une plus grande précision. Par
exemple, avec l’ensemble de données CIFAR-10, il pourrait économiser jusqu’à 67% des epoch
d’apprentissage.

15.3 Apprentissage automatique à partir de données non fiables
L’apprentissage automatique a été largement adopté pour résoudre des problèmes tels que la classi-
fication d’images ou la reconnaissance vocale, sous l’hypothèse courante que la source de données
est propre, c’est-à-dire que les caractéristiques et les étiquettes sont correctement définies. Cepen-
dant, les données collectées à partir des dispositifs automatiques ou à partir des réseaux sociales,
peuvent ne pas être fiables en raison d’annotations imprudentes ou des transformations malveillantes
des données (dans le but d’une détection incorrecte des anomalies par exemples. Dans cette partie
nous nous concentrons uniquement sur le problème d’étiquetage faux et pas sur des erreurs sur les
caractéristiques de la donnée. Il est bon à savoir qu’il est difficile d’apprendre à partir des étiquettes
bruitées car ces étiquettes risquent d’être systématiquement corrompues. En tant qu’effet négatif, les
étiquettes bruitées dégénèrent inévitablement la précision des classificateurs. Cet effet négatif de-
vient plus important dans le cas d’un scénario d’apprentissage en ligne ou sur le modèle d’un réseau
neuronal profond.

Dans cette partie nous proposons plusieurs algorithmes :

• RAD: Pour minimiser l’influence des données faussement étiquetés (noisy label en anglais),
nous proposons le cadre Robust Anomaly Detector (RAD). RAD est composé de deux couches
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de modèles d’apprentissage, c’est-à-dire un modèle qui juge la qualité des étiquettes suivi par
un autre modèle de classificateur d’anomalies. Le premier vise principalement à différencier
entre une étiquette vraie et une fausse. Pour chaque batch de nouvelles données, le modèle de
qualité d’étiquette filtre les données et autorise uniquement les données «propres» à alimenter
le classificateur d’anomalies. Les données "sales" sont supprimées. Le travail principal du
classificateur d’anomalies est de prédire l’événement de sortie. Le processus ci-dessus décrit la
phase d’apprentissage de RAD. Dans la phase de prédiction, les prédictions du modèle de qual-
ité d’étiquette et du classificateur d’anomalies contribuent ensemble à la décision finale de clas-
sification. Cependant cette méthode pose des problèmes car toutes les données d’apprentissage
pour le modèle de classification sont filtrées par le prédicteur de qualité et donc le modèle de
classification sera de plus en plus similaire au celui du prédicteur de qualité. Si donc le pré-
dicteur de qualité fait des erreurs, le modèle de classification en apprendra sur des données
erronées ce qui n’est pas ce que nous voulons.

• RAD Voting: Par conséquent, nous mettons à jour RAD ce qui nous donne une nouvelle ver-
sion: RAD Voting. Par rapport au RAD de base, nous n’utilisons pas seulement le modèle
de qualité d’étiquette pour effectuer le filtrage mais nous utilisons également un classificateur
d’anomalies pour rejoindre ce processus. Lorsqu’un nouveau batch de données arrive, le mod-
èle de qualité d’étiquette effectuera d’abord le filtrage. Donne ensuite les données incertaines
au classificateur d’anomalies. Le classificateur d’anomalies effectuera le même filtrage que le
modèle de qualité d’étiquette, sélectionne également certaines données «propres» et certaines
données incertaines. Pour la partie incertaine, si les opinions de deux modèles sont identiques,
nous utiliserons la prédiction de deux modèles pour remplacer l’étiquette de la donnée. Les
donnes incertaines ne sont pas jetées mais nous les ajouterons ensuite à une liste de données
inactive parce que nous savons que lorsque nous continuons l’apprentissage des modèles, leur
précision augmentera et nous pourrons consulter à nouveau ces données inactives.

• RAD Active Learning: Dans les deux cas précédents, nous supposons que nous ne sommes
pas en mesure d’utiliser un opérateur humain pour vérifier la vraie valeur d’une étiquette. Dans
cette partie nous supposons que nous sommes en mesure d’envoyer les données incertaines à un
expert humain qui peut donner la véritable étiquette des données. Nous l’appelons RAD Active
learning. Dans ce cas, pour toutes les données incertaines filtrées par les deux modèles, nous
ne remplaçons pas leurs étiquettes mais nous les envoyons à un expert humain qui retournera
les vraies valeurs des étiquettes pour ces données incertaines. Bien sûr, faire appel à l’opérateur
humain a un coût supplémentaire. Nous ne pouvons donc pas envoyer toutes les données in-
certaines à l’opérateur humain, parfois nous devons limiter le nombre de données que nous
pouvons envoyer à l’expert. Nous l’avons appelé RAD Active learning Limited. Dans ce cas,
nous proposons un algorithme pour classer l’incertitude dans la liste des données incertaines,
appelé Highest Uncertainty Method.

Mais bien sûr, l’opérateur humain a un coût supplémentaire, nous ne pouvons donc pas envoyer
toutes les données incertaines à l’opérateur humain, parfois nous devons limiter le nombre de
données que nous pouvons envoyer à l’expert. Nous l’avons appelé RAD Active learning
Limited. Dans ce cas, nous proposons un algorithme pour classer l’incertitude dans la liste des
données incertaines, appelé Highest Uncertainty Method.

Pour évaluer les algorithmes présentées ci-dessus nous utilisons trois bases de données classiquement
utilisées en machine learning: la classification des attaques IoT, la détection des pannes de cluster
et la reconnaissance faciale. Les résultats montrent que RAD et ses extensions peuvent améliorer
les performances du modèle d’apprentissage automatique en présence de données avec des étiquettes
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fausses mais aussi dans le cas où il n’y a aucun bruit dans les étiquettes. Highest Uncertainty Method
pour l’algorithme RAD Active Learning Limited est très utile lorsque le temps et les ressources de
calcul sont limités.
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.1 Inter-temporal elasticity of substitution
It’s a measure of responsiveness of the growth rate of consumption to the real interest rate, if the
real rate rises, current consumption may decrease due to increased return on savings; but current
consumption may also increase as the household decides to consume more immediately, as it is feeling
richer. The effect on current consumption is the inter-temporal elasticity of substitution

.2 Discount Rate
Discount rate refers to the interest rate used in discounted cash flow analysis to determine the present
value of future cash flows. For instance, if company A have a financial bill of company B, this
financial bill can take $100 from bank in one month, but company A do not want to wait a month, so
he can ask bank to take the money now, but bank can only give company A $98, so the discount rate
here is: 100/98 - 1 = 2.04%. Given a discount Rate ρ , the value of u(0) becomes u(0)(1−ρ)t after
time t.

.3 Risk Aversion
A person is given the choice between two scenarios, one with a guaranteed payoff and one without.
In the guaranteed scenario, the person receives $40. In the uncertain scenario, a coin (unbiased) is
flipped to decide whether the person receives $100 or nothing, so the expected value is $50. Will
you receive the $40 or take the chance? Before introduce the concepts, we first define the symbol in
Tab. .1 which will be used to explain the notions.

Table .1 – Symbol description for Risk Averse

Symbol Description

CE Certainty equivalent
E(U(W )) Expected value of the utility (expected utility)

E(W ) Expected value of the uncertain payment
U(CE) Utility of the certainty equivalent

U(E(W )) Utility of the expected value of the uncertain payment
U(W0) Utility of the minimal payment
U(W1) Utility of the maximal payment

W0 Minimal payment
W1 Maximal payment
RP Risk premium

One should notice that in the following three circumstances, the case.3.1 is chosen for our Ramsey-
Cass-Koopmans model.

.3.1 Risk Averse
Figure. .1 shows the relation between payment and utility for risk-averse case. By the axiom continu-
ity of “Expected Utility Hypothesis”, E(U(W )) = (U(W)+U(W1))/2. At CE, it has the same utility
of E(W)(where E(U(W)) = U(CE)), here CE is the $40 for sure, and W0, W1, E(W) are the $0, $100
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and $50 for gambling. For a person of “Risk Aversion” with utility function in the figure, take the
$40 or take the gambling has the same utility. He/She tends to accept a guaranteed value which may
be smaller than the expected value.

Figure .1 – Utility function of a risk-averse (risk-avoiding) individual.

.3.2 Risk Neutral

Risk neutral means the person is totally rational, if the guaranteed payment is lower than expected
value, he will take the chance.
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Figure .2 – Utility function of a risk-neutral individual.

.3.3 Risk Loving

Risk loving person will take the chance even the certain value is bigger than expected value, they will
still take the gambling for $100!.

Figure .3 – Utility function of a risk-loving (risk-seeking) individual
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.4 An Alternative Formulation of Household Function

b = B/AL

ḃ = (B/AL)′

=
ḂAL−B(AL)′

(AL)2

AL = A(0)L(0)eg+nt
(AL)′ = (g+n)AL

Ḃ = ḃAL+b(g+n)AL

.5 Inferential reasoning formula

u′(c) = λ (t)

λ̇ (t) =
∂u′(c)

∂ t

=
∂u′(c)∂ t

∂c∂ t
= u′′(c)ċ

λ̇ (t)
λ (t)

=
u′′(c)ċ
u′(c)

From the definition in Eq. (4.11), we know that θ =−Cu′′(C)/u′(C), then:

u′′(c)
u′(c)

=−θ

c
u′′(c)ċ
u′(c)

=−θ ċ
c

then:

λ̇ (t)
λ (t)

=−θ
ċ(t)
c(t)
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